• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Eukaryotic Gene Prediction Using GeneMark.hmm‐E and GeneMark‐ES

        互联网

        1244
        • Abstract
        • Table of Contents
        • Figures
        • Literature Cited

        Abstract

         

        This unit describes how to use the gene?finding programs GeneMark.hmm?E and GeneMark?ES for finding protein?coding genes in the genomic DNA of eukaryotic organisms. These bioinformatics tools have been demonstrated to have state?of?the?art accuracy for many fungal, plant, and animal genomes, and have frequently been used for gene annotation in novel genomic sequences. An additional advantage of GeneMark?ES is that the problem of algorithm parameterization is solved automatically, with parameters estimated by iterative self?training (unsupervised training). Curr. Protoc. Bioinform. 35:4.6.1?4.6.10. © 2011 by John Wiley & Sons, Inc.

        Keywords: gene finding; hidden Markov model; unsupervised parameter estimation

             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Table of Contents

        • Introduction
        • Basic Protocol 1: Using GeneMark.hmm for Eukaryotic Gene Prediction via Web Interface
        • Alternate Protocol 1: Using the Unix Version of GeneMark.hmm‐E
        • Basic Protocol 2: Using GeneMark‐ES for Eukaryotic Gene Prediction
        • Guidelines for Understanding Results
        • Commentary
        • Literature Cited
        • Figures
             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Materials

         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Figures

        •   Figure 4.6.1 The user interface for the eukaryotic GeneMark.hmm program. Required input includes a DNA sequence in FASTA format, either copied and pasted into the Sequence text box, or uploaded from one's local drive using the Browse button next to the Sequence File Upload box.
          View Image
        •   Figure 4.6.2 The text output for the Eukaryotic GeneMark.hmm program.
          View Image
        •   Figure 4.6.3 The graphical output from the Eukaryotic GeneMark.hmm program for a region of the example sequence. The six different panels represent the six possible reading frames, three each on the direct and reverse strands.
          View Image

        Videos

        Literature Cited

           Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403‐410.
           Borodovsky, M. and McIninch, J. 1993. GeneMark: Parallel gene recognition for both DNA strands. Comput. Chem. 17:123‐133.
           Lukashin, A.V. and Borodovsky, M. 1998. GeneMark.hmm: New solutions for gene finding. Nucleic Acids Res. 26:1107hyphen;1115.
           Lomsadze, A., Ter‐Hovhannisyan, V., Chernoff, Y., and Borodovsky, M. 2005. Gene identification in novel eukaryotic genomes by self‐training algorithm. Nucleic Acids Res. 33:6494‐6506.
           Rabiner, L.R. 1989. A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the I.E.E.E. 77:257‐286.
           Ter‐Hovhannisyan, V., Lomsadze, A., Chernoff, Y., and Borodovsky, M. 2008. Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res. 18:1979‐1990.
        Internet Resources
           http://topaz.gatech.edu/GeneMark
           GeneMark Web site.
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library
         
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序