
GO-037 Minute™ 高尔基体富集试剂盒
研选同类产品更多 >
万千商家帮你免费找货
0 人在求购买到急需产品
- 详细信息
- 用户评价
- 文献和实验
- 技术资料
- 英文名:
Minute™ Golgi Apparatus Enrichment Kit
- 保存条件:
4℃
- 规格:
20 Preps
MinuteTM 高尔基体富集试剂盒
目录号:GO-037
描述
高尔基体(Golgi apparatus)又称高尔基复合体或高尔基器,由一系列扁平堆叠的囊(池)组成。高尔基体是真核细胞中重要的细胞器,负责蛋白质和脂质的运输、修饰及包装到囊泡中,以运送到目标位置。高尔基体在不同细胞和组织类型中的数量和分布变化很大。获取高质量的高尔基体是研究其功能及与其他细胞器相互作用的重要第一步。传统分离高尔基体的方法是基于密度梯度超离心,需要大量的起始材料,并且方法冗长且耗时。与其他高尔基体分离试剂盒不同,本试剂盒采用离心管柱技术,操作简单、快速,只需少量起始材料,不需使用杜恩斯匀浆管和超高速离心,高度富集天然高尔基体。整个操作过程可以在2h内完成。


试剂盒组分(20 Preps):
1. 缓冲液 A 20ml
2. 缓冲液 B 8ml
3. 缓冲液 C 2ml
4. 缓冲液 D 2ml
5. 塑料研磨棒 2 根
6. 离心管柱 20 个
7. 收集管 20 个
重要产品信息:
1. 请仔细阅读整个操作说明。使用前将离心管柱插入接收管形成套管放置于冰上预冷。本试剂盒特别适于富集肝脏组织中的高尔基体。其他组织使用时可能需要优化。
2. 离心机请调整成离心力 Rcf/g 模式,按照离心力设置离心机,所有离心步骤都需要在 4℃室温下或者低温离心机中进行。
3. 如果您的研究涉及蛋白质磷酸化,磷酸酶抑制剂需要在使用前加入分装的缓冲液 A 中。如担心蛋白降解问题,可选择添加蛋白酶抑制剂,如添加在使用前加入缓冲液 A 中(请按照蛋白酶或磷酸酶抑制剂母液比例添加,例如母液是 100x,添加时按照 1:100 添加,1ml 缓冲液A 添加 10ul 抑制剂)。
4. 推荐使用 BCA 方法测定蛋白浓度。
5. 研磨方式请按说明书进行,请勿使用液氮研磨。请注意,分离的高尔基体的产率和纯度可能会因特定细胞/组织类型和所用起始材料的量而异。操作可根据需要优化,以实现最佳结果
(优化方法请参阅下面的技术说明)
风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。
用户评价
暂无用户评价
文献和实验1.Tan, X., Shi, L., Banerjee, P., Liu, X., Guo, H. F., Yu, J., ... & Creighton, C. J. (2020). A pro-tumorigenic secretory pathway activated by p53 deficiency in lung adenocarcinoma. The Journal of Clinical Investigation.
2.Zhu, Y., Shao, F., Yan, W., Xu, Q., & Sun, Y. (2020). Inhibition of SHP2 ameliorates psoriasis by decreasing TLR7 endosome localization. medRxiv.
3.Lita, A., Pliss, A., Kuzmin, A., Yamasaki, T., Zhang, L., Dowdy, T., ... & Larion, M. (2021). IDH1 mutations induce organelle defects via dysregulated phospholipids. Nature Communications, 12(1), 1-16.
4.Tan, X., Banerjee, P., Shi, L., Xiao, G. Y., Rodriguez, B. L., Grzeskowiak, C. L., ... & Kurie, J. M. (2021). p53 loss activates prometastatic secretory vesicle biogenesis in the Golgi. Science Advances, 7(25), eabf4885.
5.Tan, X., Banerjee, P., Liu, X., Yu, J., Lee, S., Ahn, Y. H., ... & Kurie, J. M. (2021). Transcriptional control of a collagen deposition and adhesion process that promotes lung adenocarcinoma growth and metastasis. JCI insight.
6.Zhang, L., Li, R., Geng, R., Wang, L., Chen, X. X., Qiao, S., & Zhang, G. (2022). Tumor Susceptibility Gene 101 (TSG101) Contributes to Virion Formation of Porcine Reproductive and Respiratory Syndrome Virus via Interaction with the Nucleocapsid (N) Protein along with the Early Secretory Pathway. Journal of Virology, jvi-00005.
7.Huang, F., Tang, X., Ye, B., Wu, S., & Ding, K. (2022). PSL-LCCL: a resource for subcellular protein localization in liver cancer cell line SK_HEP1. Database, 2022.
8.Mondal, T., Shivange, G., Habieb, A., & Tushir-Singh, J. (2022). A Feasible Alternative Strategy Targeting Furin Disrupts SARS-CoV-2 Infection Cycle. Microbiology Spectrum, 10(1), e02364-21.
9.Zhu, Y., Wu, Z., Yan, W., Shao, F., Ke, B., Jiang, X., ... & Sun, Y. (2022). Allosteric inhibition of SHP2 uncovers aberrant TLR7 trafficking in aggravating psoriasis. EMBO molecular medicine, 14(3), e14455.
10.Zhong, W., Lin, W., Yang, Y., Chen, D., Cao, X., Xu, M., ... & Yan, D. (2022). An acquired phosphatidylinositol 4-phosphate transport initiates T-cell deterioration and leukemogenesis. Nature Communications, 13(1), 1-18.
11.Ruiz-Rodado, V., Lita, A., & Larion, M. (2022). Advances in measuring cancer cell metabolism with subcellular resolution. Nature Methods, 1-16.
12.Edwards-Hicks, J., Apostolova, P., Buescher, J. M., Maib, H., Stanczak, M. A., Corrado, M., ... & Pearce, E. L. (2023). Phosphoinositide acyl chain saturation drives CD8+ effector T cell signaling and function. Nature Immunology, 1-15.
13.Tan, X., Xiao, G. Y., Wang, S., Shi, L., Zhao, Y., Liu, X., ... & Kurie, J. M. (2023). EMT-activated secretory and endocytic vesicular trafficking programs underlie a vulnerability to PI4K2A antagonism in lung cancer. The Journal of Clinical Investigation.
14.Liu, Y. Y., Bai, J. S., Liu, C. C., Zhou, J. F., Chen, J., Cheng, Y., & Zhou, B. (2023). The Small GTPase Rab14 Regulates the Trafficking of Ceramide from Endoplasmic Reticulum to Golgi Apparatus and Facilitates Classical Swine Fever Virus Assembly. Journal of Virology, e00364-23.
15.Xiao, X., Shi, J., He, C., Bu, X., Sun, Y., Gao, M., ... & Zhang, J. (2023). ERK and USP5 govern PD-1 homeostasis via deubiquitination to modulate tumor immunotherapy. Nature Communications, 14(1), 2859.
16.Ye, G., Liu, H., Liu, X., Chen, W., Li, J., Zhao, D., ... & Huang, L. (2023). African Swine Fever Virus H240R Protein Inhibits the Production of Type I Interferon through Disrupting the Oligomerization of STING. Journal of Virology, e00577-23.
17.Nelson, T. J., & Xu, Y. (2023). Sting and p53 DNA repair pathways are compromised in Alzheimer’s disease. Scientific Reports, 13(1), 8304.
18.Zhu, Y., Lei, L., Wang, X., Jiang, Q., Loor, J. J., Kong, F., ... & Li, X. (2023). Low abundance of insulin-induced gene 1 contributes to SREBP-1c processing and hepatic steatosis in dairy cows with severe fatty liver. Journal of Dairy Science.
19.Sherman, D. J., Liu, L., Mamrosh, J. L., Xie, J., Ferbas, J., Lomenick, B., ... & Deshaies, R. J. (2023). The fatty liver disease-causing protein PNPLA3-I148M alters lipid droplet-Golgi dynamics. bioRxiv, 2023-10.
20.Tu, Yingfeng, Qin Yang, Min Tang, Li Gao, Yuanhao Wang, Jiuqiang Wang, Zhe Liu et al. "TBC1D23 mediates Golgi-specific LKB1 signaling." Nature Communications 15, no. 1 (2024): 1785.
21.Ding, L., Huwyler, F., Long, F., Yang, W., Binz, J., Wernlé, K., ... & Wolfrum, C. (2024). Glucose controls lipolysis through Golgi PtdIns4P-mediated regulation of ATGL. Nature Cell Biology, 1-15.
22.Liu, X., Chen, H., Ye, G., Liu, H., Feng, C., Chen, W., ... & Huang, L. (2024). African swine fever virus pB318L, a trans-geranylgeranyl-diphosphate synthase, negatively regulates cGAS-STING and IFNAR-JAK-STAT signaling pathways. PLoS pathogens, 20(4), e1012136.
23.Badal, K. K., Zhao, Y., Raveendra, B. L., Lozano-Villada, S., Miller, K. E., & Puthanveettil, S. (2024). PKA Activity-Driven Modulation of Bidirectional Long-Distance transport of Lysosomal vesicles During Synapse Maintenance. bioRxiv, 2024-06.
24.Smita Saha, Anirban Mandal, Akash Ranjan, Debasish Kumar Ghosh,et al(2024).Membrane tension sensing formin-binding protein 1 is a neuronal nutrient stress-responsive Golgiphagy receptor.Metabolism, doi.org/10.1016/j.metabol.2024.156040
25.Chen, H., Lu, C., Tan, Y., Weber-Boyvat, M., Zheng, J., Xu, M., ... & Zhong, W. (2023). Oculocerebrorenal syndrome of Lowe (OCRL) controls leukemic T-cell survival by preventing excessive PI (4, 5) P2 hydrolysis in the plasma membrane. Journal of Biological Chemistry, 104812.
26.Han et al., Host specific sphingomyelin is critical for replication of diverse RNA viruses, Cell Chemical Biology (2024),doi.org/10.1016/j.chembiol.2024.10.009
27.Aldonza MBD, Cha J, Yong I, Ku J, Sinitcyn P, Lee D, Cho RE, Delos Reyes RD, Kim D, Kim S, Kang M, Ku Y, Park G, Sung HJ, Ryu HS, Cho S, Kim TM, Kim P, Cho JY, Kim Y. Multi-targeted therapy resistance via drug-induced secretome fucosylation. Elife. 2023 Mar 24;12:e75191. doi: 10.7554/eLife.75191. PMID: 36961502; PMCID: PMC10089660.
28.Wang Y, Wang Y, Ding L, Ren X, Wang B, Wang L, Zhao S, Yue X, Wu Z, Li C, Liang X, Ma C, Gao L. Tim-4 reprograms cholesterol metabolism to suppress antiviral innate immunity by disturbing the Insig1-SCAP interaction in macrophages. Cell Rep. 2022 Nov 29;41(9):111738. doi: 10.1016/j.celrep.2022.111738.
29.Donghyun Kang; Jeeyeon Lee; Geunho Yook; Seok Hoo Jeong; Jungkwon Shin; et al.(2025).Regulation of senescence-associated secretory phenotypes in osteoarthritis by cytosolic UDP-GlcNAc retention and O-GlcNAcylation.Nature Communications.DOI 10.1038/s41467-024-55085-1
30. Randall R. Rainwater; Ana Clara P. Azevedo‐Pouly; Zachary Waldrip; B.R. Hicks; Nicholas A. Callais; et al.(2025).DNA-PKcs governs LAT-dependent signaling in CD4+ and CD8+ T cells. bioRxiv (Cold Spring Harbor Laboratory).DOI 10.1101/2025.03.06.641745
31.Xiaochao Tan; Chao‐Liang Wu; Priyam Banerjee; Shike Wang; Derrick L. Cardin; et al(2025).Dichotomous roles of ACBD3 in NSCLC growth and metastasis. Oncogene.DOI 10.1038/s41388-025-03360-w
32.Xiaochao Tan; Derrick L. Cardin; Shike Wang; Yuting Xu; William K. Russell.(2025).Monensin suppresses EMT-driven cancer cell motility by inducing Golgi pH–dependent exocytosis of GOLIM4.PNAS.DOI 10.1073/pnas.2501347122
33.Hang Yin; Cong Shi; Chaofei Su; Kaixiang Zhang.(2025).Organelle membrane-associated proteins recruit cGAS via phase separation to facilitate its membrane localization.bioRxiv (Cold Spring Harbor Laboratory).DOI 10.1101/2025.08.01.668185
延伸的模板。然后反转录酶转换模板,以SMART 寡苷酸作为模板继续延伸。这样合成得到的单链cDNA 在3"端有一段与SMART 寡苷酸互补的序列,在5"端有一段与oligo(dT)引物互补的序列。这些序列作为下一步进行长距离PCR 的引物合成位点。结果可以得到富集全长序列的双链cDNA。 问:SMART试剂盒系列产品之间有什么差别? 答: SMART cDNA Library Construction Kit 是用来从少量RNA 样本中构建高质量的cDNA 文库。试剂盒中包括
蛋白对检测的干扰,血清中有大约 55% 的蛋白为白蛋白,而 IgG 大约占血清中蛋白总量的 10-25%,这些高丰度蛋白的存在会增加低丰度蛋白检测的难度,去除占血清总蛋白近 75% 的白蛋白和 IgG 将有助于更好地鉴定其他的蛋白。G-Biosciences 的锚点™白蛋白去除试剂盒堪称白蛋白去除神器。血浆和脑脊髓液等样本中,包含大量的白蛋白,从而封闭掉在二维凝胶电泳中发现和鉴定其他低丰度蛋白的可能。AlbuminOUT™白蛋白去除试剂盒被设计用来在这种样本中大量去除白蛋白。 这种白蛋白
,在300 nm 处紫外光激发检测即可。YeaRed 适用于琼脂糖和聚丙烯酰胺凝胶电泳中的 dsDNA, ssDNA 以及 RNA 染色,可以选择胶染法或泡染法进行染色,使用非常方便和灵活。点此索取技术资料与报价 品牌:YEASEN Minute™ 高效外泌体沉淀试剂创新点:Minute™ 高效外泌体沉淀试剂使用非 PEG 配方,用于体液和细胞培养液中总外泌体的沉淀。其他产品每种不同样品都需要相应的试剂盒,此试剂盒可以用相同的试剂和类似的操作步骤来完成不同样品外泌体的富集。 点此索取技术资料与报价
技术资料需要更多技术资料 索取更多技术资料










