• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Exploring Pathways from Gene Co-expression to Network Dynamics

        互联网

        386
        One of the major challenges in post-genomic research is to understand how physiological and pathological phenotypes arise from the networks or connectivity of expressed genes. In addressing this issue, we have developed two computational algorithms, CoExMiner and PathwayPro, to explore static features of gene co-expression and dynamic behaviors of gene networks. CoExMiner is based on B-spline approximation followed by the coefficient of determination (CoD) estimation for modeling gene co-expression patterns. The algorithm allows the exploration of transcriptional responses that involve coordinated expression of genes encoding proteins which work in concert in the cell. PathwayPro is based on a finite-state Markov chain model for mimicking dynamic behaviors of a transcriptional network. The algorithm allows quantitative assessment of a wide range of network responses, including susceptibility to disease, potential usefulness of a given drug, and consequences of such external stimuli as pharmacological interventions or caloric restriction. We demonstrated the applications of CoExMiner and PathwayPro by examining gene expression profiles of ligands and receptors in cancerous and non-cancerous cells and network dynamics of the leukemia-associated BCR–ABL pathway. The examinations disclosed both linear and nonlinear relationships of ligand–receptor interactions associated with cancer development, identified disease and drug targets of leukemia, and provided new insights into biology of the diseases. The analysis using these newly developed algorithms show the great usefulness of computational systems biology approaches for biological and medical research.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序