• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Constructing Multivariate Prognostic Gene Signatures with Censored Survival Data

        互联网

        394
        Modern high-throughput technologies allow us to simultaneously measure the expressions of a huge number of candidate predictors, some of which are likely to be associated with survival. One difficult task is to search among an enormous number of potential predictors and to correctly identify most of the important ones, without mistakenly identifying too many spurious associations. Mere variable selection is insufficient, however, for the information from the multiple predictors must be intelligently combined and calibrated to form the final composite predictor. Many commonly used procedures overfit the training data, miss many important predictors, or both. Although it is impossible to simultaneously adjust for a huge number of predictors in an unconstrained way, we propose a method that offers a middle ground where some partial multivariate adjustments can be made in an adaptive fashion, regardless of the number of candidate predictors. We demonstrate the performance of our proposed procedure in a simulation study within the Cox proportional hazards regression framework, and we apply our new method to a publicly available data set to construct a novel prognostic gene signature for breast cancer survival.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序