• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Use of Chromophoric Ligands to Visually Screen Co‐Crystals of Putative Protein‐Nucleic Acid Complexes

        互联网

        726
        • Abstract
        • Table of Contents
        • Materials
        • Figures
        • Literature Cited

        Abstract

         

        Distinguishing between crystals of protein?nucleic acid complexes and those containing protein alone is a common problem in structural studies of protein?nucleic acid interactions. Currently, there are several methods available for detecting nucleic acid in crystals, including gel electrophoresis, SYBR Gold fluorescence dye staining, and methyl violet staining. However, they require either that the crystals be sacrificed or access to a fluorescence microscope. In this protocol, we describe an approach that allows direct visualization of either the presence or absence of oligonucleotides in crystals grown from solutions containing both protein and nucleic acid?labeling with the Cy5 dye. In addition to offering the advantage of being able to distinguish between crystals of complex and protein alone with the naked eye or a light microscope, crystals of covalently Cy5?labeled DNA can be directly used for X?ray diffraction data collection. Curr. Protoc. Nucleic Acid Chem. 46:7.15.1?7.15.8. © 2011 by John Wiley & Sons, Inc.

        Keywords: crystallization; oligonucleotide conjugates; protein?nucleic acid interactions; X?ray crystallography

             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Table of Contents

        • Introduction
        • Basic Protocol 1: Co‐Crystallization of a Duplex Composed of 5′‐Cy5‐Labeled DNA Primer and Unlabeled DNA Template with DNA Polymerase Eta from Saccharomyces cerevisiae (scPol η)
        • Commentary
        • Literature Cited
        • Figures
             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Materials

        Basic Protocol 1: Co‐Crystallization of a Duplex Composed of 5′‐Cy5‐Labeled DNA Primer and Unlabeled DNA Template with DNA Polymerase Eta from Saccharomyces cerevisiae (scPol η)

          Materials
        • Purified and desalted 5′‐Cy5‐labeled primer strand (5′‐Cy5‐GTGGTCAAG‐3′; Integrated DNA Technologies; http://www.idtdna.com/Home/Home.aspx)
        • Purified and desalted native DNA template strand 5′‐CTTCTTGACCAC‐3′ (IDT)
        • sc Pol η enzyme, catalytic core, residues 1‐513 (sc Pol η 1‐513 ) (Trincao et al., ; Alt et al., )
        • Ice
        • Magnesium chloride (Fisher Scientific)
        • 2′‐Deoxyadenosine‐5′‐[(α,β)‐methyleno]triphosphate (dAMPcPP; Jena Bioscience)
        • PEG Suite crystallization screen (Qiagen) containing reservoir solution
        • Microcentrifuge tubes
        • Various pipetman pipets and tips (Gilson)
        • Benchtop centrifuge
        • Heating block to anneal the primer and template strands
        • Vortex mixer
        • Siliconized glass circle cover slides (Hampton Research)
        • 24‐well plastic tray (Hampton Research)
        • Light microscope
        • Nylon loops for harvesting and flash‐freezing crystals (Hampton Research)
        • Liquid nitrogen
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Figures

        •   Figure Figure 7.15.1 Chemical structures of the (A ) Cy5 and (B ) Cy3 dyes. Panel A depicts a conjugate between Cy5 and the 5′‐terminal residue of an oligo‐2′‐deoxynucleotide via a phosphodiester moiety.
          View Image
        •   Figure Figure 7.15.2 (A ) Micrograph of a crystal of the complex between sc Pol η and a DNA primer‐template duplex with a 5′‐Cy5‐labeled primer strand. (B ) A color‐labeled crystal of the complex inside a cryoloop, ready for data collection. The scale bar at the bottom left represents 50 µm.
          View Image
        •   Figure Figure 7.15.3 Electron density maps for the complex between sc Pol η1‐513 and a DNA duplex containing the 5′‐Cy5‐labeled primer are consistent with partially ordered DNA. Superimposed Fourier (2F o ‐F c ) sum (blue) and (F o ‐F c ) difference electron density (red) maps drawn at the 1σ level reveal only a tetranucleotide fragment (left) that maps to the central part of the DNA template strand. Virtually no density existed in the region presumably occupied by the primer strand or at the active site (not shown). Conversely, the protein portion is well ordered and fully surrounded by sum electron density. Carbon, nitrogen, and oxygen atoms of sc Pol η are colored in green, blue, and red, respectively. Diffraction data of high completeness with a resolution of 1.92 Å were collected on the LS‐CAT 21‐ID‐F beamline, Advanced Photon Source, Argonne National Laboratory (Argonne, Illinois). The maps were computed at a stage of the refinement with values for R‐work and R‐free of 27.1% and 30.2%, respectively.
          View Image
        •   Figure Figure 7.15.4 Cryoloop with a crystal of the complex between sc Pol η and a DNA primer‐template duplex with a 5′‐TAMN‐labeled primer strand. The purple tint of the crystal indicates presence of both protein and DNA. The scale bar at the bottom left represents 50 µm.
          View Image

        Videos

        Literature Cited

        Literature Cited
           Alt, A., Lammens, K., Chiocchini, C., Lammens, A., Pieck, J.C., Kuch, D., Hopfner, K.P., and Carell, T. 2007. Bypass of DNA lesions generated during anticancer treatment with cisplatin by DNA polymerase eta. Science 318:967‐970.
           Batra, V.K., Beard, W.A., Shock, D.D., Krahn, J.M., Pedersen, L.C., and Wilson, S.H. 2006. Magnesium‐induced assembly of a complete DNA polymerase catalytic complex. Structure 14:757‐766.
           Blower, M.D., Feric, E., Weis, K., and Heald, R. 2007. Genome‐wide analysis demonstrates conserved localization of messenger RNAs to mitotic microtubules. J. Cell Biol. 179:1365‐1373.
           Crichlow, G.V., Zhou, H., Hsiao, H.H., Frederick, K.B., Debrosse, M., Yang, Y., Folta‐Stogniew, E.J., Chung, H.J., Fan, C., De la Cruz, E.M., Levens, D., Lolis, E., and Braddock, D. 2008. Dimerization of FIR upon FUSE DNA binding suggests a mechanism of c‐myc inhibition. EMBO J. 27:277‐289.
           Ernst, L.A., Gupta, R.K., Mujumdar, R.B., and Waggoner, A.S. 1989. Cyanine dye labeling reagents for sulfhydryl groups. Cytometry 10:3‐10.
           Georgescu, R.E., Kim, S.S., Yurieva, O., Kuriyan, J., Kong, X.P. and O'Donnell, M. 2008. Structure of a sliding clamp on DNA. Cell 132:43‐54.
           Hollis, T. 2007. Crystallization of protein‐DNA complexes (Chapter 11). Methods Mol. Biol. Macromolecular Crystallography Protocols: Volume 1: Preparation and Crystallization of Macromolecules Edited ( Doublié, S., Ed.), Humana Press Inc., Totowa, N.J, 363:225‐237.
           Kettenberger, H. and Cramer, P. 2006. Fluorescence detection of nucleic acids and proteins in multi‐component crystals. Acta Cryst. D 62:146‐150.
           Loukachevitch, L.V. and Egli, M. 2007. Crystallization and preliminary X‐ray analysis of Escherichia coli RNase HI‐dsRNA complexes. Acta Cryst. F 63:84‐88.
           Sam, M.D., Abbani, M.A., Cascio, D., Johnson, R.C., and Clubb, R.T. 2006. Crystallization, dehydration and preliminary X‐ray analysis of excisionase (Xis) proteins cooperatively bound to DNA. Acta Cryst. F 62:825‐828.
           Silverstein, T.D., Johnson, R.E., Jain, R., Prakash, L., Prakash, S., and Aggarwal, A.K. 2010. Structural basis for the suppression of skin cancers by DNA polymerase eta. Nature 465:1039‐1043.
           Trincao, J., Johnson, R.E., Escalante, C.R., Prakash, S., Prakash, L., and Aggarwal, A.K. 2001. Structure of the catalytic core of S. cerevisiae DNA polymerase η: Implications for translesion DNA synthesis. Mol. Cell 8:417‐426.
           Wilkosz, P.A., Chandrasekhar, W.K., and Rosenberg, J.M. 1995. Preliminary characterization of EcoRI‐DNA co‐crystals: Incomplete factorial design of oligonucleotide sequences. Acta Cryst. D 51:938‐945.
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library
         
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序