• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Real‐Time Quantitative PCR Analysis of Mitochondrial DNA Content

        互联网

        2177
        • Abstract
        • Table of Contents
        • Materials
        • Figures
        • Literature Cited

        Abstract

         

        Mitochondrial disorders are a group of complex and heterogeneous diseases that may be caused by molecular defects in the nuclear or mitochondrial genome. The biosynthesis and integrity of the small 16.6?kb mitochondrial genome require a group of nuclear encoded genes. The mitochondrial DNA (mtDNA) depletion syndromes (MDDSs) are autosomal recessive disorders caused by molecular defects in nuclear genes, and characterized by a reduction in mtDNA content. To date, mutations in at least nine genes (POLG , DGUOK , TK2 , TYMP , MPV17 , SUCLA2 , SUCLG1 , RRM2B , and C10orf2 ) have been reported to cause various forms of MDDSs. In the clinical setting, a simple method to determine mtDNA depletion would be useful prior to undertaking gene sequence analysis. This unit outlines the real?time quantitative polymerase chain reaction (qPCR) analysis of mtDNA content in tissues. MtDNA content varies among different tissues and at different ages in the same individual. Detailed protocols for the selection of nuclear genes for normalization, PCR set up, validation procedures, tissue and age matched controls, and sensitivity and specificity in various tissues, as well as interpretation of results are discussed. Curr. Protoc. Hum. Genet. 68:19.7.1?19.7.12 © 2011 by John Wiley & Sons, Inc.

        Keywords: mtDNA copy number; mtDNA content; mtDNA qPCR; quantification of mtDNA content; mtDNA depletion

             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Table of Contents

        • Introduction
        • Strategic Planning
        • Basic Protocol 1: Real‐Time Quantitative PCR for the Quantification of mtDNA Content
        • Support Protocol 1: Generation of mtDNA Age‐Matched Controls
        • Support Protocol 2: Preparation and Quantification of DNA Samples
        • Commentary
        • Literature Cited
        • Figures
        • Tables
             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Materials

        Basic Protocol 1: Real‐Time Quantitative PCR for the Quantification of mtDNA Content

          Materials
        • Genomic DNA samples (see protocol 4 )
        • qPCR primers for mitochondrial tRNALeu(UUR) gene, alternate primers for mtDNA 16S rRNA gene and nuclear β‐2‐microglobulin (β2M ) gene (Table 19.7.2 ), 5 µM working concentration diluted in water
        • iTaq SYBR Green SuperMix with ROX (Bio‐Rad, cat. no. 170‐8852)
        • Tissue‐ and age‐matched pooled controls (see protocol 3 )
        • PCR hood
        • 96‐well thin‐walled PCR plates
        • Adhesive plate sealer
        • ABI Prism 7900HT sequence detector system (Applied Biosystems)
        • Data analysis software: SDS software (version 2.2)
          Table 9.7.2   MaterialsqPCR Primer Sequences and Conditions

          Gene Primer name Primer sequence (5′ to 3′) Amplicon size (bp) Annealing temperature (°C)
          mtDNA tRNALeu(UUR) tRNA F3212 CACCCAAGAACAGGGTTTGT 107 62
            tRNA R3319 TGGCCATGGGTATGTTGTTA    
          nDNA β2‐microglobulin β2M F594 TGCTGTCTCCATGTTTGATGTATCT 86 62
            β2M R679 TCTCTGCTCCCCACCTCTAAGT    
          Alternate primers:mtDNA 16S rRNA mtF3163 GCCTTCCCCCGTAAATGATA 97 62
            mtR3260 TTATGCGATTACCGGGCTCT    

           

        Support Protocol 1: Generation of mtDNA Age‐Matched Controls

          Materials
        • Tissues
        • Puregene kit (Gentra Systems, cat. no. D50K1) including:
          • Red cell lysis solution
          • Cell lysis solution
          • DNA hydration solution
          • Protein precipitation solution
        • 100% isopropanol
        • 70% ethanol
        • Rapid hair digestion buffer: 10 mM Tris⋅Cl (pH 8.0), 1.0% Brij 58, 35 mM DTT, 1 mM CaCl 2
        • Calf thymus DNA standards (type XV; Sigma, cat. no. D4522)
        • NanoDrop ND‐1000 UV‐Vis spectrophotometer
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Figures

        •   Figure 19.7.1 Cycle parameters utilized for amplification by qPCR. Annealing temperatures can vary according to different T m .
          View Image
        •   Figure 19.7.2 mtDNA copy number amplification plot. The amplification plot represents two patient samples with an age‐matched muscle control. Curves 1 through 3 represent mtDNA amplification of samples with increased mtDNA copy number, normal copy number in an age matched control, and mtDNA depletion, respectively. Curves 4 through 6 represent the amplification of the nDNA using β2M primer set for the same three samples. The results are calculated in Table .
          View Image
        •   Figure 19.7.3 Control mtDNA content across blood and muscle samples by age. Reprinted with permission from Clinical Chemistry (Dimmock et al., ).
          View Image

        Videos

        Literature Cited

        Literature Cited
           Antonicka, H., Mattman, A., Mattman, A., Carlson, C.G., Glerum, D.M., Hoffbuhr, K.C., Leary, S.C., Kennaway, N.G., and Shoubridge, E.A. 2003. Mutations in COX15 produce a defect in the mitochondrial heme biosynthetic pathway, causing early‐onset fatal hypertrophic cardiomyopathy. Am. J. Hum. Genet. 72:101‐114.
           Bai, R.K. and Wong, L.J. 2004. Detection and quantification of heteroplasmic mutant mitochondrial DNA by real‐time amplification refractory mutation system quantitative PCR analysis: A single‐step approach. Clin. Chem. 50:996‐1001.
           Bai, R.K. and Wong, L.J. 2005. Simultaneous detection and quantification of mitochondrial DNA deletion(s), depletion, and over‐replication in patients with mitochondrial disease. J. Mol. Diagn. 7:613‐622.
           Bourdon, A., Minai, L., Serre, V., Jais, J.P., Sarzi, E., Aubert, S., Chrétien, D., de Lonlay, P., Paquis‐Flucklinger, V., Arakawa, H., Nakamura, Y., Munnich, A., and Rötig, A. 2007. Mutation of RRM2B, encoding p53‐controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat. Genet. 39:776‐780.
           Carrozzo, R., Dionisi‐Vici, C., Steuerwald, U., Lucioli, S., Deodato, F., Di Giandomenico, S., Bertini, E., Franke, B., Kluijtmans, L.A., Meschini, M.C., Rizzo, C., Piemonte, F., Rodenburg, R., Santer, R., Santorelli, F.M., van Rooij, A., Vermunt‐de Koning, D., Morava, E., and Wevers, R.A. 2007. SUCLA2 mutations are associated with mild methylmalonic aciduria, Leigh‐like encephalomyopathy, dystonia and deafness. Brain 130:862‐874.
           Dimmock, D.P., Zhang, Q., Dionisi‐Vici, C., Carrozzo, R., Shieh, J., Tang, L.Y., Truong, C., Schmitt, E., Sifry‐Platt, M., Lucioli, S., Santorelli, F.M., Ficicioglu, C.H., Rodriguez, M., Wierenga, K., Enns, G.M., Longo, N., Lipson, M.H., Vallance, H., Craigen, W.J., Scaglia, F., and Wong, L.J. 2008. Clinical and molecular features of mitochondrial DNA depletion due to mutations in deoxyguanosine kinase. Hum. Mutat. 29:330‐331.
           Dimmock, D., Tang, L.Y., Schmitt, E.S., and Wong, L.J. 2010. A quantitative evaluation of the mitochondrial DNA depletion syndrome. Clin. Chem. 56:1119‐1127.
           Elpeleg, O., Miller, C., Hershkovitz, E., Bitner‐Glindzicz, M., Bondi‐Rubinstein, G., Rahman, S., Pagnamenta, A., Eshhar, S., and Saada, A. 2005. Deficiency of the ADP‐forming succinyl‐CoA synthase activity is associated with encephalomyopathy and mitochondrial DNA depletion. Am. J. Hum. Genet. 76:1081‐1086.
           Galbiati, S., Bordoni, A., Papadimitriou, D., Toscano, A., Rodolico, C., Katsarou, E., Sciacco, M., Garufi, A., Prelle, A., Aguennouz, M., Bonsignore, M., Crimi, M., Martinuzzi, A., Bresolin, N., Papadimitriou, A., and Comi, G.P. 2006. New mutations in TK2 gene associated with mitochondrial DNA depletion. Pediatr. Neurol. 34:177‐185.
           Hakonen, A.H., Isohanni, P., Paetau, A., Herva, R., Suomalainen, A., and Lönnqvist, T. 2007. Recessive TWINKLE mutations in early onset encephalopathy with mtDNA depletion. Brain 130:3032‐3040.
           Lee, N.C., Dimmock, D., Hwu, W.L., Tang, L.Y., Huang, W.C., Chinault, A.C., and Wong, L.J. 2009. Simultaneous detection of mitochondrial DNA depletion and single‐exon deletion in the deoxyguanosine gene using array‐based comparative genomic hybridisation. Arch. Dis. Child 94:55‐58.
           Nishino, I., Spinazzola, A., and Hirano, M. 1999. Thymidine phosphorylase gene mutations in MNGIE, a human mitochondrial disorder. Science 283:689‐692.
           Ostergaard, E., Hansen, F.J., Sorensen, N., Duno, M., Vissing, J., Larsen, P.L., Faeroe, O., Thorgrimsson, S., Wibrand, F., Christensen, E., and Schwartz, M. 2007a. Mitochondrial encephalomyopathy with elevated methylmalonic acid is caused by SUCLA2 mutations. Brain 130:853‐861.
           Ostergaard, E., Christensen, E., Kristensen, E., Mogensen, B., Duno, M., Shoubridge, E.A., and Wibrand, F. 2007b. Deficiency of the alpha subunit of succinate‐coenzyme A ligase causes fatal infantile lactic acidosis with mitochondrial DNA depletion. Am. J. Hum. Genet. 81:383‐387.
           Pontarin, G., Fijolek, A., Pizzo, P., Ferraro, P., Rampazzo, C., Pozzan, T., Thelander, L., Reichard, P.A., and Bianchi, V. 2008. Ribonucleotide reduction is a cytosolic process in mammalian cells independently of DNA damage. Proc. Natl. Acad. Sci. U.S.A. 105:17801‐17806.
           Sarzi, E., Goffart, S., Serre, V., Chrétien, D., Slama, A., Munnich, A., Spelbrink, J.N., and Rötig, A. 2007. TWINKLE helicase (PEO1) gene mutation causes mitochondrial DNA depletion. Ann. Neurol. 62:579‐587.
           Shaibani, A., Shchelochkov, O.A., Zhang, S., Katsonis, P., Lichtarge, O., Wong, L.J., and Shinawi, M. 2009. Mitochondrial neurogastrointestinal encephalopathy due to mutations in RRM2B. Arch. Neurol. 66:1028‐1032.
           Shanske, S. and Wong, L.J. 2004. Molecular analysis for mitochondrial DNA disorders. Mitochondrion 4:403‐415.
           Spinazzola, A. and Zeviani, M. 2007. Disorders of nuclear‐mitochondrial intergenomic communication. Biosci. Rep. 27:39‐51.
           Spinazzola, A. and Zeviani, M. 2009. Disorders from perturbations of nuclear‐mitochondrial intergenomic cross‐talk. J. Intern. Med. 265:174‐192.
           Tay, S.K., Shanske, S., Kaplan, P., and DiMauro, S. 2004. Association of mutations in SCO2, a cytochrome c oxidase assembly gene, with early fetal lethality. Arch. Neurol. 61:950‐952.
           Wong, L.J., Brunetti‐Pierri, N., Zhang, Q., Yazigi, N., Bove, K.E., Dahms, B.B., Puchowicz, M.A., Gonzalez‐Gomez, I., Schmitt, E.S., Truong, C.K., Hoppel, C.L., Chou, P.C., Wang, J., Baldwin, E.E., Adams, D., Leslie, N., Boles, R.G., Kerr, D.S., and Craigen, W.J. 2007. Mutations in the MPV17 gene are responsible for rapidly progressive liver failure in infancy. Hepatology 46:1218‐1227.
           Wong, L.J., Naviaux, R.K., Brunetti‐Pierri, N., Zhang, Q., Schmitt, E.S., Truong, C., Milone, M., Cohen, B.H., Wical, B., Ganesh, J., Basinger, A.A., Burton, B.K., Swoboda, K., Gilbert, D.L., Vanderver, A., Saneto, R.P., Maranda, B., Arnold, G., Abdenur, J.E., Waters, P.J., and Copeland, W.C. 2008. Molecular and clinical genetics of mitochondrial diseases due to POLG mutations. Hum. Mutat. 29:E150‐E172.
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library
         
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序