• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Integrative Approaches for Microarray Data Analysis

        互联网

        486
        Microarrays were one of the first technologies of the genomic revolution to gain widespread adoption, rapidly expanding from a cottage industry to the source of thousands of experimental results. They were one of the first assays for which data repositories and metadata were standardized and researchers were required by many journals to make published data publicly available. Microarrays provide high-throughput insights into the biological functions of genes and gene products; however, they also present a “curse of dimensionality,” whereby the availability of many gene expression measurements in few samples make it challenging to distinguish noise from true biological signal. All of these factors argue for integrative approaches to microarray data analysis, which combine data from multiple experiments to increase sample size, avoid laboratory-specific bias, and enable new biological insights not possible from a single experiment. Here, we discuss several approaches to integrative microarray analysis for a diverse range of applications, including biomarker discovery, gene function and interaction prediction, and regulatory network inference. We also show how, by integrating large microarray compendia with diverse genomic data types, more nuanced biological hypotheses can be explored computationally. This chapter provides overviews and brief descriptions of each of these approaches to microarray integration.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序