丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

4.23 丁香实验科研午间快讯(每日更新)

丁香园

2295

4.23 丁香实验科研午间快讯(每日更新)


①Cell Stem Cell八大热点文章(4月)

《Cell Stem Cell》杂志是2007年Cell出版社新增两名新成员之一(另外一个杂志是Cell Host & Microbe),这一杂志内容涵盖了从最基本的细胞和发育机制到医疗软件临床应用等整个干细胞生物学研究内容。这一杂志特别关注胚胎干细胞、组织特异性和癌症干细胞的最新成果。《Cell Stem Cell》自创刊以来就倍受关注,影响因子迅速提升,从0一冲至16.826,又达到了23.394。其中最受关注的文章包括:

Precise Gene Editing Preserves Hematopoietic Stem Cell Function following Transient p53-Mediated DNA Damage Response

近期一些研究表明,利用CRISPR基因编辑治疗遗传性血液相关疾病(如镰状细胞性贫血,地中海贫血和原发性免疫缺陷综合征),存在潜在问题,因为干细胞也许会关闭基因作为应答,而且如果想要绕过这个障碍,也会增加患上癌症的风险。

但是来自意大利的一组研究人员指出,还是有解决办法的,可以利用更精确的基因编辑技术,减少DNA断裂,从而让干细胞的自然损伤-应答途径处于可控范围内。

文章的通讯作者,San Raffaele Telethon基因疗法研究所Pietro Genovese说,“基因组编辑是干细胞精确基因工程的一种非常强大的策略,但它的步骤复杂,尽管这种方法存在极大的治疗潜力,以及基因编辑平台的不断进步,编辑的功能性后果尚未完全阐明。”

比如明星蛋白p53,这种蛋白被称为“基因组的守护者”,因为它在保护DNA稳定性和预防突变方面发挥着重要作用。当CRISPR编辑基因时,它会切割特定位置的两条DNA链。但是这些双链断裂可以向p53发出信号,表明出现了问题。然后p53就会开始起作用,阻止细胞增殖,这对于细胞基因疗法来说,事与愿违。但是要是永久性地关闭p53,来预防这种机制的发生,又会导致肿瘤的形成,真是左右为难。

不过好在这组研究人员找到了解决办法。

基因编辑利用核酸酶作为“遗传剪刀”来诱导DNA断裂,然后使用腺相关病毒载体来递送校正序列。但是当这些剪刀不够精确的时候,它们可能会在许多其他地方切割DNA。如果研究人员使用高度特异性的核酸酶和载体,就能在造血干/祖细胞(HSPCs)的DNA中引入所需的断裂。

“我们发现基因编辑对HSPC的影响,在很大程度上取决于所使用的核酸酶的精确度,”另一位作者,San Raffaele Telethon基因疗法研究所所长Luigi Naldini说,“如果核酸酶不是高度特异性的,就会在一些额外的脱靶位点切割DNA。”

“如果核酸酶是高度特异性的,那么就只会对细胞增殖产生短暂影响,这是一个可逆的过程,而且能与造血干细胞的重要生物学特性相兼容。”

早期研究指出了p53失活突变的理论风险,引发了对基因编辑治疗潜力的担忧,而这项研究表明,HSPCs可以很好地耐受一个或几个DNA断裂,短暂的p53激活,对其功能的影响有限(主要表现为延迟增殖)。当采用高度特异性的“基因剪刀”,配合上腺相关病毒载体,提供校正DNA序列时,这种细胞反应会稍微延长。但是如果在基因编辑过程中瞬时灭活p53反应,就可以抵消这种影响,提高编辑细胞的产量,而不会增加突变或提高基因组不稳定性。

“HSPCs基因编辑的另一个主要挑战是HSPC中同源重组的效率相对较低,这是引入修复模板提供的校正序列所导致的,我们近期报道的其它新技术能缓解这一问题。

Single-Cell Transcriptomics Uncovers Glial Progenitor Diversity and Cell Fate Determinants during Development and Gliomagenesis

胶质祖细胞异质性特征和程度及其对脑恶性肿瘤的贡献尚不明确。通过应用谱系靶向的单细胞转录组学,辛辛那提儿童医院医疗中心Q. Richard Lu博士揭示了发育过程中的大脑中具有独特分子身份的神经胶质祖细胞的多样性。他们的分析明确了星形胶质细胞和少突神经胶质细胞谱系中不同的过渡中间状态及其不同的发育轨迹。此外,交叉分析揭示了在脑肿瘤发生期间类似的中间祖细胞过度增殖,并且逐渐被重编程为易于进一步恶性转化的干细胞状态。同时进一步研究揭示了胶质细胞命运背后的谱系驱动网络,并确定Zfp36l1是少突胶质细胞-星形胶质细胞谱系转变和胶质瘤生长所必需的。

Human iPSC-Derived Natural Killer Cells Engineered with Chimeric Antigen Receptors Enhance Anti-tumor Activity

美国加州大学圣地亚哥分校和明尼苏达大学的研究人员报道利用人诱导性多能干细胞(induced pluripotent stem cell, iPS细胞)培养出的并且以与CAR-T细胞相似的方式加以修饰的自然杀伤细胞(natural killer cell, NK细胞)在小鼠模型中高效地抵抗卵巢癌。

Kaufman及其团队设计出9种靶向间皮素(mesothelin)的CAR构造体,其中间皮素是一种在许多人类癌症中表达的抗原。在测试这些CAR在体外摧毁癌细胞的效果后,他们选择出最有效的CAR构建体,在人iPS细胞中表达它们,随后将ips细胞分化为NK细胞。

Kaufman团队通过将人卵巢癌细胞移植到免疫系统受到抑制的小鼠中来构建出小鼠模型。他们随后将CAR-NK细胞灌注到这些小鼠体内,而且为了进行比较,也利用CAR-T细胞进行了同样的研究。

这些研究人员使用生物发光成像监测肿瘤。他们指出,与接受不表达CAR的NK细胞灌注的对照小鼠相比,接受人ipsC衍生的CAR-NK细胞治疗的小鼠和接受CAR-T细胞治疗的小鼠在21天后都具有缩小的肿瘤。

Single-Cell Transcriptomics Meets Lineage Tracing

这篇综述的侧重点在单细胞测序用于细胞谱系(lineage)追踪,内容包括了不同的算法、策略等等。

Prolonged Fasting Reduces IGF-1/PKA to Promote Hematopoietic-Stem-Cell-Based Regeneration and Reverse ImmunosuppressionChia

科学家们发现,周期性的长时间禁食不仅对免疫系统损伤(化疗的主要副作用)有保护作用,而且还能诱导免疫系统再生,令休眠的干细胞开始更新。这是人们首次发现,天然干涉手段能够激活干细胞,促进器官或系统的再生。

研究人员通过小鼠实验和1期临床试验发现,长时间不进食会显著降低白细胞数。进一步研究显示,小鼠周期性禁食“触动了一个再生开关”,改变了造血干细胞的信号通路。造血干细胞负责生成血液和免疫系统的细胞。

这项研究将有望帮助那些正在接受化疗或者患有免疫缺陷的人,包括自身免疫疾病的患者。目前研究团队正在研究,禁食的干细胞再生效果,是否也能在免疫系统之外起作用。

Systematic Identification of Culture Conditions for Induction and Maintenance of Naive Human Pluripotency

多年来,研究人员和患者一直都希望,胚胎干细胞(ESCs)——可形成体内几乎任何类型的细胞——能给许多疾病提供见解,甚至被用来治疗疾病。

但是,因为无法将来自小鼠ESC的研究和工具转移到人类研究,因此使这方面的进展受到限制,在某种程度上是因为人类胚胎干细胞是“始发态(primed)”的,塑性略微低于小鼠细胞。

最近,美国Whitehead生物医学研究所Rudolf Jaenisch实验室的科学家Thorold Theunissen、Benjamin Powell和Haoyi Wang,发现了如何操控和维持人类ESCs,使其处于一种类似小鼠ESCs的“原态”或基础多能状态,而无需使用任何重编程因子。

hESC-Derived Thalamic Organoids Form Reciprocal Projections When Fused with Cortical Organoids

自耶鲁大学的研究人员近日在实验室培养皿中模拟了两种大脑结构以及它们之间的相互作用,为揭示神经精神疾病的起因带来了曙光。

耶鲁大学遗传学副教授In-Hyun Park及其团队创造了大脑中丘脑的类器官,丘脑是整合感觉信息并将之传递给大脑不同部位的重要集成器。研究人员通过干细胞创造了类器官以模拟大脑的不同区域并评估它们的功能。研究人员对丘脑感兴趣是因为有几种精神疾病和丘脑有关系。

研究人员随后将这种丘脑类器官与大脑另一个部位——额皮质的类器官融合在一起,额皮质具有更高级的认知功能。“现在我们正在尝试使用这种类丘脑去研究癫痫、自闭症、精神分裂症甚至是抑郁症。许多患这些疾病的人的额皮质和丘脑之间的联系存在缺陷,同时丘脑的微观结构也发生了改变。”

Injury Induces Endogenous Reprogramming and Dedifferentiation of Neuronal Progenitors to Multipotency

在衰老的背景下,嗅觉也是正常老化的一部分。老年人通常都会经历嗅觉功能下降乃至完全丧失的过程。

无论因衰老导致的,还是因药物或疾病损伤导致的嗅觉丧失都会降低生活质量,甚至营养状况,尤其使老年人的安全和健康受到威胁。

因此,科学家们的研究重点一是扩大成年人的成体干细胞数量,维持嗅觉不随年龄增长而衰减;二是开发具有推迟或阻止嗅觉递减的药物制剂。

胚胎干细胞能铸造体内任何细胞类型,而成体或组织干细胞的分化效力却非常有限。成人嗅觉上皮的神经发生通常被描述为自我平衡和修复过程中的单向通路(unidirectional pathway)。

本文,研究团队挑战了这一模型的单向性,鼻粘膜损伤处理解锁了小鼠的Ascl1+祖细胞和Neurog1+专一性神经前体细胞的潜能,使它们能够去分化为多能性干/祖细胞,再将这些干细胞移植给其他小鼠,它们能生成鼻腔组织中的所有不同类型细胞。

Functional Repair of CFTR by CRISPR/Cas9 in Intestinal Stem Cell Organoids of Cystic Fibrosis Patients

科学家们首次将基因组编辑技术CRISPR运用于人类细胞,离现在还不到1年的时间。很快地这一技术便已星火燎原。现在来自中科院上海生命科学研究院和荷兰Hubrecht研究所的两个独立研究小组证实,可以利用CRISPR在小鼠和人类干细胞中改写遗传缺陷,有效地治疗疾病。

杜克大学基因组学研究人员Charles Gersbach(未参与两项研究)说:“这两项研究的重要意义在于:将CRISPR带到了它的下一个应用阶段,在这两个研究中它纠正了致病突变。”


②两篇Nature子刊文章揭示致癌基因的关键作用

西班牙国立癌症研究中心(CNIO)的研究人员在小鼠模型中成功鉴别出了一个对于MYC致癌至关重要的蛋白,他们认为这有可能成为未来抗癌药物的一个新靶点。这项研究利用了全基因组数据分析技术,在包含成百上千个基因的网络中调查了MYC的行为。

MYC是在细胞中调控基因表达的主要蛋白之一。大多数的这些蛋白只对基因组中不到1%的基因起作用,但MYC却调控了2000-3000个基因,占据了整个基因组中15%的基因。因此,MYC介入了许多的细胞功能:细胞生长、增殖、分化及凋亡。

当MYC调控异常之时,它会促进多种癌症,如胰腺癌、卵巢癌、结肠癌、淋巴瘤形成。在一半以上的人类癌症中MYC基因发生了改变,它往往与非常具有侵袭性的肿瘤相关。

研究小组采用这一研了一种全基因组数据分析策略。利用体外培养细胞及一些生物信息学工具,他们成功鉴别出了一个叫做BPTF的基因是癌症中一个潜在的重要基因。研究人员还在膀胱癌中检测到了BPTF突变,并随后证实当BPTF失活时,细胞无法生长。这表明了一种与MYC相关的功能。

因此,BPTF似乎是允许MYC发挥功能的一连串分子事件中一个重要的环节。这项研究证实阻断BPTF,肿瘤细胞无法增殖或它们的增殖受到抑制;因此,作者们认为这一基因可能是治疗许多癌症类型的一个新靶点。

“我们认为,治疗MYC依赖性肿瘤一种重要的方法是,利用一些小分子来破坏MYC与BPTF 之间的相互作用,”

另外,来自德克萨斯大学MD安德森癌症中心的研究人员分析了来自癌症基因组图谱(TCGA)的数据,发现了HIF-1在一种难治性侵袭性乳腺癌:三阴性乳腺癌(TNBC)中的作用。

三阴性乳腺癌,是指雌激素受体(ER)、孕激素受体(PR)和人表皮生长因子受体(HER2)均呈阴性的一种特殊类型乳腺癌,约占所有乳腺癌的15%,其许多生物学特性和基底细胞样乳腺癌相似,但两者之间存在某些基因表达谱和免疫表型上的差异,因此亦不能完全等同。在西方人群中,三阴性乳腺癌占全部乳腺癌的10%-15%,尤以非洲裔人群多见。这种疾病本身具有较高的侵袭性,术后复发转移风险高,且缺乏内分泌治疗,抗HER2靶向治疗的机会。

研究人员证实4个磷酸化位点影响了一些关键细胞功能。研究在一条LINK-A调控的信号通路中鉴别出了4个从前未知的磷酸化位点。这些事件预测出TNBC患者具有较差的预后表明,LINK-A信号通路在这一疾病中起至关重要的作用,有可能提供了一些广泛的治疗靶点。

原文标题:

The LINK-A lncRNA activates normoxic HIF1α signalling in triple-negative breast cancer

BPTF is required for c-MYC transcriptional activity and in vivo tumorigenesis


③Cell:揭示体细胞突变促进肝脏组织再生

在一项新的研究中,来自美国国家糖尿病、消化与肾疾病研究所和德克萨斯大学西南医学中心的研究人员通过对来自82名患者的患病肝脏样本进行外显子组测序,揭示出肝硬化中的复杂突变景观。相关研究结果发表在2019年4月18日的Cell期刊上,论文标题为“Somatic Mutations Increase Hepatic Clonal Fitness and Regeneration in Chronic Liver Disease”。

进一步的超深度测序鉴定出PKD1、PPARGC1B、KMT2D和ARID1A基因发生频发突变(recurrent mutation)。细胞突变体克隆的数量和大小随着肝脏纤维化阶段和组织损伤的增加而增加。

为了研究突变基因的功能影响,这些研究人员建立了一种合并的体内CRISPR筛选方法。与测序结果一致的是,对147个基因的检测再次表明Pkd1、Kmt2d和Arid1a的缺失促进了克隆扩增。在小鼠中,这些基因的条件性杂合缺失在组织损伤检测中也具有保肝作用。癌变前的体细胞突变通常从癌症的视角来观察,但是他们证实突变能够促进肝脏组织再生,而可能与癌症发生无关。(生物谷 Bioon.com)

参考资料:

Min Zhu et al. Somatic Mutations Increase Hepatic Clonal Fitness and Regeneration in Chronic Liver Disease. Cell, 2019, doi:10.1016/j.cell.2019.03.026.



④Cell:新研究揭示环境致癌物的独特突变特征,有助揭示癌症病因

在一项新的研究中,来自英国剑桥大学、伦敦国王学院和韦尔科姆基金会桑格研究所的研究人员对324种暴露于79种已知或潜在的环境致癌物的人诱导性多能干细胞(ips细胞)进行全基因组测序,以便研究其中的突变特征。相关研究结果于2018年4月11日在线发表在Cell期刊上,论文标题为“A Compendium of Mutational Signatures of Environmental Agents”。

这些研究人员发现41种已知或潜在的环境致癌物产生了特有的替换突变特征。其中的一些突变特征类似于在人类肿瘤中发现的突变特征。此外,6种环境致癌物产生双替换突变特征,8种环境致癌物产生indel(insertion or deletion, 插入或删除)突变特征。

再者,这些研究人员通过研究基因组拓扑学结构中的突变不对称性,揭示出完全功能性错配修复途径和转录偶联修复途径(transcription-coupled repair pathway)处于活性状态。环境诱变剂诱导的DNA损伤可以通过不同的修复和/或复制途径来加以解决,这就导致各种特征性结果产生,即便是存在单个环境诱变剂,也是如此。

这种对实验诱导的突变特征的概要允许进一步探索环境致癌物在癌症病因学中的作用,并强调了人类干细胞DNA如何会直接受到环境致癌物的影响。

参考资料:

Jill E. Kucab et al, A Compendium of Mutational Signatures of Environmental Agents, Cell (2019). DOI: 10.1016/j.cell.2019.03.001.

ad image
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序