首页 » 技术服务 » 其它 » 其它 » CRISPR/Cas9

CRISPR/Cas9

CRISPR/Cas9
技术资料: 免费索取技术资料
 丁香通采购保障计划,让您的采购更放心。查看详情

供应商信息

和元生物技术(上海)股份有限公司
商家诚信度:
成立时间:2013
入驻丁香通年限:5年
商家等级:金牌客户
产品信息完整度:63%
联系人:毛女士 点击这里给我发消息

若您通过QQ未能联系到商家,您可以给商家发送站内信,与其取得联系。

扫一扫
微信联系商家

邮件: mlh@oobio.com.cn

手机:13501676670

电话:021-31601005

地址:上海市浦东新区国际医学园区紫萍路908弄19号楼

该商家已通过实名认证
 

产品详情

简介: 根据客户提供的基因信息,设计sgRNA序列,再将sgRNA片段构建到腺相关病毒载体,生产的病毒颗粒可以直接用于感染细胞或者动物实验。
提供商: 和元上海
服务名称: CRISPR/Cas9/基因编辑/sgRNA
地区: 上海

CRISPR/Cas9/基因编辑/sgRNA/AAV/腺相关病毒

 

服务简介:

基因组编辑技术目前常用的是CRISPR/Cas9和TALEN,而CRISPR/Cas9被使用的更为广泛。通过设计sgRNA(short guide RNA),以引导Cas9对DNA的定点切割,造成DNA双链的断裂,然后细胞可以利用非同源末端连接(Non-homologous End Joining,NHEJ)或者同源重组(Homologous Recombination, HR)方式实现基因敲除或对基因精确编辑的目的。

腺相关病毒具有感染温和,免疫原性小,长效稳定表达的特点。AAV的主要应用方向在于定位注射和整体注射实验。不同血清型的AAV组织感染嗜亲性各不相同,表现出一定的器官靶向特异性,可以参考腺相关病毒的组织嗜亲性表格。

根据客户提供的基因信息,设计sgRNA序列,再将sgRNA片段构建到腺相关病毒载体,生产的病毒颗粒可以直接用于感染细胞或者动物实验。

服务流程:

 

服务优势:

对分裂期细胞和非分裂期细胞均有感染作用;

低免疫原性,安全性高;

实验周期短。

Cas9可供选择的载体:

载体名称 载体特点 应用方式
pAAV-miCMV-Cas9     腺相关病毒 Cas9质粒现货
pAAV-U6-sgRNA-CMV-EGFP 腺相关病毒 sgRNA表达
 

其他相关应用

光遗传     化学遗传     神经环路示踪    钙离子成像     CRISPR/Cas9

Cre-LoxP     RNA干扰     基因过表达     microRNA表达    microRNA抑制

基因组编辑技术是一种通过同源重组手段定向改造基因组的技术,是进行基因组改造和探索基因功能的关键手段,包括基因敲除、外源基因定点插入、基因定点突变,以及染色体大片段的重排和删除等。传统的靶向基因组编辑技术主要依赖于基因同源重组,利用设计的同源臂替代靶基因片段,从而达到基因敲除的目的,但是同源重组在细胞中的发生概率极低,而且步骤比较复杂、耗时间、费用也比较高。

近几年出现了很多新型基因组编辑工具,如锌指核酸酶(zinc finger nucleases,ZFN)、类转录激活因子效应物核酸酶(Transcription activator-like effector nuclease,TALEN)以及CRISPR/Cas9技术。利用ZFN、TALEN以及CRISPR/Cas9技术可以在特定位点产生基因组双链DNA断裂(double-strand breaks,DSB),通过非同源末端连接(non homologous end joining, NHEJ)诱发DNA的错误修复,进而形成各种基因大段删除或重排(图1)。其中,CRISPR/Cas9技术由于构建简单、成本低、效率高等特点,自发明以来,迅速被研究人员广泛应用于各类科学研究中,成为了当今生命科学研究的热门技术。

作为最新最“火”的基因组编辑技术,CRISPR/Cas9技术被评为2013年生物学十大突破,2014年值得关注的技术。该技术的发明者之一,麻省理工大学的张锋教授2013年被Nature杂志评为十大人物。


图1. CRISPR/Cas9技术示意图

CRISPR/Cas9技术简介

不论是ZFN技术还是TALEN技术,其介导的基因定向打靶都依赖于DNA特异性结合蛋白的合成,由于这一步骤繁琐、耗时、花费高,因此限制了ZFN和TALEN的应用。而CRISPR/Cas9技术能够介导由RNA导向的DNA识别及编辑,使用一段序列特异性向导RNA分子(sequence-specific guide RNA,gRNA)引导核酸内切酶到靶点处,从而完成基因组的编辑,该系统制作简单、成本低、作用高效,为构建更高效简便的基因组编辑技术提供了全新的平台。

CRISPR/Cas系统最早是在细菌的获得性免疫系统中发现的。规律性重复短回文序列簇(clustered regularly interspaced short palindromic repeats, CRISPR) 是一类独特的DNA规律性重复序列,存在于大多数的细菌和古细菌中。通常在临近CRISPR的区域还包含一组保守的蛋白质编码基因,被称为Cas(CRISPR-associated)基因,其编码的蛋白质包括核酸酶、聚合酶、解旋酶,具有与核糖核酸结合的功能。这些Cas蛋白与CRISPR转录出的RNA结合形成核糖核蛋白复合物,在原核生物中发挥着获得性免疫功能,使宿主获得抵抗噬菌体、质粒等外来DNA入侵的免疫能力。

一般来说,当外源DNA片段入侵后,宿主会捕获一段20bp左右的DNA片段(被称为protospacer),将其插入到自身的基因组中,形成CRISPR区域,在TypeIICRISPR/Cas系统中,主要由Cas9蛋白、反式激活 crRNA(trans-activating crRNA, tracrRNA)和 CRISPR-derived RNA(crRNA)组成。CRISPR区域首先转录成前体RNA(pre-crRNA),在Cas9蛋白的参与下加工成一段含保守重复序列和间隔区的成熟crRNA,同时,tracrRNA也会被转录并和crRNA形成一种双链的RNA结构,然后与Cas9蛋白组成具有DNA内切酶活性的复合物。该复合物在crRNA的引导下,由Cas9蛋白的核酸结构域对外源DNA进行切割(图2)。其中,tracrRNA结合DNA序列的位置是protospacer和PAM(protospacer-adjacent motif)序列,CRISPR/Cas9系统的切割位点依赖于crRNA互补序列下游的PAM序列,该序列对于靶位点的识别和切割是必需的,在每4~8 bp的随机DNA序列中就重复出现一次,因此对于靶位点的设计还是相对容易的。


图2. CRISPR/Cas9适应性免疫系统的特性

研究发现,将pre-crRNA和tracrRNA构建成一个融合RNA(single-guide RNA, sgRNA)来模拟成熟的crRNA和tracrRNA,导入细胞后同样可以与Cas9蛋白共同作用特异地切割目的DNA,从而将CRISPR/Cas9系统简化成Cas9蛋白和sgRNA两个组分,来实现对特定靶向位点的切割。

CRISPR/Cas9技术的操作步骤

通过人工设计tracrRNA/crRNA,可以改造成具有引导作用的sgRNA,以引导cas9对DNA的定点切割,造成DNA双链的断裂,然后细胞可以利用NHEJ或者同源重组的方式实现基因敲除或对基因精确编辑的目的,CRISPR/Cas9技术的应用主要包括以下几个关键步骤(图3):

1.靶基因分析:根据靶基因的名称和种属信息,在NCBI、Ensembl Genomes或其他分子生物学网站上进行查找,搜索到该基因的信息,并明确CDS外显子部分;

2.sgRNA位点设计:确定待敲除位点,对于蛋白编码基因,如果该蛋白具有重要结构功能域,可考虑将基因敲除位点设计在编码该结构域的外显子;如果不能确定基因产物性质,可选择将待敲除位点放在起始密码子ATG后的外显子上。如果是microRNA,可以将待敲除位点设计在编码成熟microRNA的外显子或在编码成熟microRNA的外显子的5’和3’侧翼序列。选择好要设计的区域后,再通过预测网站进行序列预测。序列预测的目的主要是避免Cas9脱靶效应,以确保设计的sgRNA尽可能的减少脱靶效应;

3.Cas9载体构建:根据sgRNA序列,安排引物合成。引物合成时,需要在引物的5’端引入粘性末端。将引物退火形成带粘性末端的双链片段,取1ul用于后续的连接反应,其余在-20℃下保存。对表达载体先进行限制性内切酶酶切,得到线性化载体,再把前面得到的双链片段连接入表达载体。再进行感受态细胞的转化和阳性转化子的鉴定;

4.Cas9载体活性检测:对于构建的Cas9载体,转染细胞进行重组效率的检测,检测的方法主要是采用特异性片段扩增后进行的T7E1酶切处理,这一方法可以特异、定量的检测基因组重组效率。


图3. CRISPR/Cas9技术的应用流程

CRISPR/Cas9技术优点

作为被称为第三代基因编辑技术的CRISPR/Cas9系统,相比于ZFN系统和TALEN系统,它有着如下优点:

1.可用位点更多:理论上基因组中每8个碱基就能找到一个可以用CRISPR/Cas9进行编辑的位点,可以说这一技术能对任意基因进行操作,而TALEN和ZFN系统则在数百甚至上千个碱基中才能找到一个可用位点,大大限制了使用范围;

2.具有可拓展性:例如可以通过对Cas9蛋白的修饰,让它不切断DNA双链,而只是切开单链,这样可以大大降低切开双链后带来的非同源末端连接造成的染色体变异风险。此外还可以将Cas9蛋白连接其他功能蛋白,从而在特定DNA序列上研究这些蛋白对细胞的影响;

3.使用极为方便:只需要简单的几步就能完成,几乎任何实验室都可以开展工作,因此省时省力;

4.可同时对几个基因进行操作:利用CRISPR/Cas9技术可以非常高效地对多个基因进行敲除,这一特点在针对多基因突变而引起的疾病研究中将发挥重要作用。

CRISPR/Cas9工具在神经系统中的应用

1.基因敲除:如果利用Cas9-sgRNA进行切割产生DNA双链断裂后,神经元会通过非同源末端连接(non-homologous end joining,NHEJ)方式修复DNA,则核酸链被剪切的区域会发生基因突变,导致编码基因的敲低或敲除(图4)。


图4. AAV递送Cas9对海马齿状回Mecp2的影响

2.基因敲入:CRISPR/Cas9系统中的Cas9-sgRNA在靶位点进行切割产生DNA双链断裂后,如果细胞通过同源重组(homology-dependent repair,HDR)方式修复DNA,则目的基因会插入到断裂位点,导致细胞编码目的基因。但相比其他系统,要在神经系统实现基因敲入的主要限制是HDR在终末分化神经元的发生概率,因此寻找能触发HDR在神经元有效发生的信号通路是关键。

3.在神经系统疾病模型建立及治疗研究中的应用:过去几年研究人员利用CRISPR/Cas9技术对大脑发育和神经性疾病中起到重要作用的基因进行剪切。相比脆性X染色体综合症是由单个基因突变造成,而像精神分裂症由多基因发生突变显得更复杂。CRISPR/Cas9技术无疑是研究由多基因突变引起的孤独症、抑郁症、强迫症等神经疾病的最好技术。例如,如果发现Huntington基因中特异片段突变造成了Huntington综合症,我们就将突变片段通过CRISPR/Cas9技术编辑到小鼠胚胎中,然后就能研究它们的行为和生理变化,从而判断这类小鼠是否有Huntington综合症的表象,还能给它们相关药物,观察是否能够缓解Huntington综合症的症状(图5)。


图5. 利用CRISPR/Cas9技术研究神经系统疾病的流程示意图

如果有不止一个基因突变导致了病变,如精神分裂症,也能够通过设计多引导RNA(或者DNA模板)同时诱导更多突变位点进入小鼠胚胎(图6)。


图6. CRISPR/Cas9构建多基因突变疾病模型

相关产品

CRISPR/Cas9/基因编辑/sgRNA/AAV/腺相关病毒  服务简介:基因组编辑技术目前常用的是CRISPR/Cas9和TALEN,而CRISPR/Cas9被使用的更为广泛。通过设计sgRNA(short guide RNA),以引导Cas9对DNA的定点切割,造成DNA双链的断裂,然后细胞可以利用非同源末端连接(Non-homologous End Joining,NHEJ)或者同源重组(Homologous Recombination, HR)方式实现基因敲除或对基因精确编辑的目的。腺相关病毒具有感染温和,免疫原性小,长效稳定表达的特点。AAV的主要应用方向在于定位注射和整体注射实验。不同血清型的AAV组织感染嗜亲性各不相同,表现出一定的器官靶向特异性,可以参考腺相关病毒的组织嗜亲性表格。根据客户提供的基因信息,设计sgRNA序列,再将sgRNA片段构建到腺相关病毒载体,生产的病毒颗粒可以直接用于感染细胞或者动物实验。服务流程: 服务优势:对分裂期细胞和非分裂期细胞均有感染作用;低免疫原性,安全性高;实验周期短。Cas9可供选择的载体: 载体名称 载体特点 应用方式 pAAV-miCMV-Cas9     腺相关病毒 Cas9质粒现货 pAAV-U6-sgRNA-CMV-EGFP 腺相关病毒 sgRNA表达  其他相关应用光遗传     化学遗传     神经环路示踪    钙离子成像     CRISPR/Cas9Cre-LoxP     RNA干扰     基因过表达     microRNA表达    microRNA抑制基因组编辑技术是一种通过同源重组手段定向改造基因组的技术,是进行基因组改造和探索基因功能的关键手段,包括基因敲除、外源基因定点插入、基因定点突变,以及染色体大片段的重排和删除等。传统的靶向基因组编辑技术主要依赖于基因同源重组,利用设计的同源臂替代靶基因片段,从而达到基因敲除的目的,但是同源重组在细胞中的发生概率极低,而且步骤比较复杂、耗时间、费用也比较高。近几年出现了很多新型基因组编辑工具,如锌指核酸酶(zinc finger nucleases,ZFN)
腺病毒介导基因组编辑服务简介:        基因组编辑技术目前常用的是CRISPR/Cas9和TALEN,而CRISPR/Cas9被使用的更为广泛。通过设计sgRNA(short guide RNA),以引导Cas9对DNA的定点切割,造成DNA双链的断裂,然后细胞可以利用非同源末端连接(Non-homologous End Joining,NHEJ)或者同源重组(Homologous Recombination, HR)方式实现基因敲除或对基因精确编辑的目的。       和元生物腺病毒具有宿主范围广,免疫原性强,基因容量大,不与基因组整合,瞬间表达等特点,目前较为成熟的载体系统有非复制型(如AdMax)和复制型(又叫溶瘤腺病毒)两种。腺病毒适于在短时间内进行基因高表达的实验。        和元生物根据客户提供的基因信息,设计sgRNA序列,再将sgRNA片段构建到腺病毒载体,生产的病毒颗粒可以直接用于感染细胞或者动物实验。 服务流程:和元生物服务优势:对分裂期细胞和非分裂期细胞均有感染作用表达迅速高效包装容量大,最长重组片段可达4.5k多种载体可选 和元生物Cas9可供选择的载体: 载体名称 载体种类 应用方式 pAdeno-U6-sgRNA-CMV-3FLAG-hCas9 腺病毒 单一载体含sgRNA和Cas9 pAdeno-U6-sgRNA- CMV-3FLAG-hCas9n 腺病毒 单一载体含sgRNA和Cas9 pAdeno-U6-sgRNA- CMV-EGFP 腺病毒 sgRNA载体 pAdeno-CMV-mcherry-T2A-3FLAG-hCas9 腺病毒 Cas9质粒现货 pAdeno-CMV-mcherry-T2A-3FLAG-hCas9n 腺病毒 Cas9n质粒现货  和元生物相关技术服务:慢病毒介导基因组编辑腺相关病毒介导基因组编辑腺病毒相关技术服务:      腺病毒|基因组编辑      腺病毒|基因表达      腺病毒|RNA干扰      腺病毒|microRNA抑
CRISPR Cas9基因编辑技术简介:CRISPR Cas9 是一种由RNA指导Cas核酸酶对靶向基因进行特定基因编辑的技术,是细菌和古细菌在长期演化过程中形成的一种适应性免疫防御机制,其原理是Cas9蛋白通过导向性RNA (guide RNA, sgRNA) 识别特定基因组位点并进行剪切,目前已被广泛应用于基因组的精确编辑修饰,我司主要提供基于CRISPR/Cas9系统的基因敲除稳定细胞系的构建服务。实验原理图或流程图:技术服务流程:①针对敲除目的基因设计合适靶点;②构建 cas9-gRNA表达质粒并测序验证;③目的细胞培养,并将构建好的表达质粒转染细胞;④抗性筛选获得单克隆细胞;⑤基因敲除细胞系的检测客户提供信息:①待敲除目的基因信息,即靶向DNA信息;②需构建敲除株的细胞信息,如客户提供细胞,新鲜细胞,灌满培养基运输,或细胞冻存管,干冰运输实验结果交付:①基因敲除稳定细胞株;②详细实验报告,含所需试剂耗材、仪器设备、操作过程及相关原始数据结果 
CRISPR/Cas9/基因编辑/sgRNA/慢病毒/LV/LV包装  一、CRISPR/Cas9技术:CRISPR/Cas系统最早是在细菌的获得性免疫系统中发现的。规律性重复短回文序列簇 (clustered regularly interspaced short palindromic repeats, CRISPRs) 是一类独特的DNA规律性重复序列,存在于大多数的细菌和古细菌中。通常在临近CRISPR的区域还包含一组保守的蛋白质编码基因,被称为Cas(CRISPR-associated)基因,其编码的蛋白质包括核酸酶、聚合酶、解旋酶,具有与核糖核酸结合的功能。这些Cas蛋白与CRISPR转录出的RNA结合形成核糖核蛋白复合物,在原核生物中发挥着获得性免疫功能,使宿主获得抵抗噬菌体、质粒等外来DNA入侵的免疫能力。一般来说,当外源DNA片段入侵后,宿主会捕获一段20bp左右的DNA片段(被称为protospacer),将其插入到自身的基因组中,形成CRISPR区域,在Type II CRISPR-Cas系统中,主要由Cas9蛋白、反式激活 crRNA(trans-activating crRNA, tracrRNA)和 CRISPR-derived RNA(crRNA)组成。CRISPR区域首先转录成前体RNA(pre-crRNA),在Cas9蛋白的参与下加工成一段含保守重复序列和间隔区的成熟crRNA,同时,tracrRNA也会被转录并和crRNA形成一种双链的RNA结构,然后与Cas9蛋白组成具有DNA内切酶活性的复合物。该复合物在crRNA的引导下,由Cas9蛋白的核酸结构域对外源DNA进行切割。其中,tracrRNA结合DNA序列的位置是protospacer和PAM(protospacer-adjacent motif)序列,CRISPR/Cas9系统的切割位点依赖于crRNA互补序列下游的PAM序列,该序列对于靶位点的识别和切割是必需的,在每4~8 bp的随机DNA序列中就重复出现一次,因此对于靶位点的设计还是相对容易的。研究发现,将pre-crRNA和tracrRNA构建成一个融合RNA(single-guide RNA, sgRNA)来模拟成熟的crRNA和tracrRNA,导入细胞后同样可以与Cas9蛋

数据正在加载,请稍候...

电话: 021-31601005 联系人: 毛女士 (联系我时请说在丁香通看到的)

30秒填写信息,方便商家与您及时沟通

您未登录,马上登录 注册,即可保存询价历史
换一个



询价发送成功

和元生物技术(上海)股份有限公司 会在1个工作日内联系您!

马上登录注册,即可保存询价历史

你可能感兴趣的产品

生物学霸
帮助你升级成为学霸。
查看