产品封面图
文献支持

DLD-1人结直肠腺癌上皮传代细胞活性强|送STR图谱

收藏
  • ¥850 - 2150
  • 冠导生物
  • DLD-1人结直肠腺癌上皮传代细胞活性强|送STR图谱
  • 美国、德国、欧洲等地
  • 2025年07月15日
    avatar
  • 企业认证

    点击 QQ 联系

    • 详细信息
    • 文献和实验
    • 技术资料
    • 品系

      详见细胞说明资料

    • 细胞类型

      详见细胞说明资料

    • 肿瘤类型

      详见细胞说明资料

    • 供应商

      上海冠导生物工程有限公司

    • 库存

      ≥100瓶

    • 生长状态

      详见细胞说明资料

    • 年限

      详见细胞说明资料

    • 运输方式

      常温运输【复苏细胞】或干冰运输【冻存细胞】

    • 器官来源

      详见细胞说明资料

    • 是否是肿瘤细胞

      详见细胞说明资料

    • 细胞形态

      详见细胞说明资料

    • 免疫类型

      详见细胞说明资料

    • 物种来源

      详见细胞说明资料

    • 相关疾病

      详见细胞说明资料

    • 组织来源

      详见细胞说明资料

    • 英文名

      DLD-1人结直肠腺癌上皮传代细胞活性强|送STR图谱

    • 规格

      1*10(6)Cellls/瓶

    "DLD-1人结直肠腺癌上皮传代细胞活性强|送STR图谱
    传代方法:1:2-1:4(首次传代建议1:2)
    生长特性:贴壁生长
    换液频率:每周2-3次
    背景资料:DLD-1是1977-1979年间D.L.Dexter和同事分离的两株结直肠腺癌细胞株中的一株。在AC和其它地方进行的DNAfingerprinting和染色体组型分析表明这株细胞与HCT-15(CCL-225)相似,说明这两者是来自同一个人的不同克隆。他们的遗传起源可通过DNAfingerprinting证实,但染色体组型分析显示它们缺乏染色体标记一致改变或数目上一致改变。细胞的C阴性(C-)。DLD-1细胞的p53抗原表达呈阳性(p53抗原产生了一个C->
    526 Cells;背景说明:黑色素瘤;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SK-RC-52 Cells、LUDLU-1 Cells、H548 Cells
    LM3 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:HCC1500 Cells、UCLA-SO-M14 Cells、H-35 Cells
    32D clone 3 Cells;背景说明:骨髓淋巴瘤;C3H/HeJ;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:A875 Cells、MDA231-LM2 Cells、N-9 Cells
    【细胞培养中支原体、黑蛟虫、真菌的污染情况总结】支原体:黑色的,HAO象多为多形,培养一般培养一般会浑浊,原体感染,国内血清很多都没有做支原体阴性检测,而支原体是牛血清中Zui常见的微生物之一。而且它不能用过滤的办法除去。支原体感染细胞以后,细胞病变不很明显,只是慢慢死去。用泰乐菌素,兽用支原体病的药,但可用于细胞培养,无任何不良反应。如果作为常用的抗生素的话, 建议用8ug/ml的浓度;黑蛟虫:可以穿透滤膜,也可以通过空气传播,低倍下为黑色点状,GAO倍下可看见黑色的小虫游来游去,培养也是不浑的,一般不会太影响,细胞还是可以用的。常常是细胞生长状态良HAO,且观测到的运动物无明显增多,且培养颜色、透明度无明显变化,可在同一批号的血清养的细胞中发现类似现象。对细胞生长状态不会有明显影响,在细胞增殖旺盛之后会自然消失,除更换血清外无须殊处理。建议如果细胞有可能是此种污染的话,可以增加细胞的种板密度,以提GAO细胞的生存率;真菌:一般培养清亮,不变色,镜下有丝状物,有些真菌开始很像死细胞碎片,只是它很多很多的小块很清楚,象珊瑚状,不象细胞碎片分不清,慢慢的会长出很细的黑色丝状物。真菌生长的比较慢,不象细菌那么容易被发现,但是一旦发现有它的存在细胞就被污染了,也很难救活了。
    DLD-1人结直肠腺癌上皮传代细胞活性强|送STR图谱
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    产品包装形式:复苏细胞:T25培养瓶(一瓶)或冻存细胞:1ml冻存管(两支)
    来源说明:细胞主要来源ATCC、DSMZ等细胞库
    物种来源:Human\Mouse\Rat\Others
    RC-2 Cells;背景说明:来源于日本人的肾脏肿瘤细胞。 可以移植到裸鼠。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:HR-1 Cells、HPDE Cells、OKT3 Cells
    Hce8693 Cells;背景说明:盲肠腺癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:UPCI-SCC-154 Cells、ME-1 [Human leukemia] Cells、CMT-167 Cells
    UMRC2 Cells;背景说明:肾透明细胞癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:32D/cl3 Cells、Malme3M Cells、HBZY-1 Cells
    ECC 12 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:GC-2 Cells、J774 Cells、3T3 J2 Cells
    造成实验室细胞污染常见情况总结:细胞培养中Zui常见污染的是细菌、真菌和支原体污染。细胞一旦污染,大多数较难处理。那么,哪些情况我们不注意的话就会造成细胞污染呢?我们根据常见细胞培养实验分析总结下。【违规操作】1)为节省时间,有人已经用超净台四个多小时,不开紫外灭菌30min,酒精擦拭后直接开始试验;2)器材或者溶很久没用,未检测是否污染而直接使用;离心管多次使用,枪头为了方便交叉使用;3)超净台不点酒精灯;点了酒精灯放在右上角,而你在左下角做试验;4)不带手套,徒手操作;5)细胞培养间配备枪式移器、手术器械、离心机、冰箱等专用仪器设备以及专用的实验服和拖鞋,未定期消毒。专用物品被带出传代细胞使用。培养细胞过程中使用的所有实验用具,如移管、一次性枪头、一次性塑料离心管、冻存管等未按要求灭菌使用(通常需121°CGAO压灭菌20分钟后37%烤干备用)。超净台和桌面,东西太多太乱:超净台不是储物箱,什么培养皿、各种规格的板子、枪头就不要堆在超净台!这样就会有许多紫外线顾不到的卫生死角。传代细胞其他的桌面,切忌东西堆积如山,不要将酒精棉球、标签纸、牛皮纸买来后全部堆在传代细胞!一不小心“飘”进你的细胞培养板里,细胞就会养的不HAO,啥时候死了都不知道!【培养箱太久没清洁】细胞污染了,并非直接扔了培养皿就不管了,首先你还得看看这个恒温培养箱里其他培养皿或孔板里的细胞是否污染,如果有而且HAO几个板子都有类似的污染块,那很可能是培养箱中的水或者空气污染了,得给培养箱做个大扫除,重新酒精消毒,照紫外;孵箱里的水,水没了要记得加,还得记得十天半个月的就用酒精擦擦托盘。【传代细胞人多口杂,难管理】在传代细胞这种卫生要求GAO,人多了,不确定因素多了,难以保证试验在无菌条件下操作。出入试验室,实验服当风衣穿,不扣纽扣,不戴,就容易造成细胞污染;超净台做实验时,喜欢说话聊着做试验,要是还不带口罩,里面就有很多细菌等着去攻击你的细胞呢!
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    DLD-1人结直肠腺癌上皮传代细胞活性强|送STR图谱
    形态特性:上皮细胞样
    上皮细胞(epithelial cell)是构成上皮组织的基本单位,广泛分布在人体的各个表面和体腔内,外胚层来源:皮肤、腺垂体、内耳膜、角膜、晶状体、鼻腔、口腔、肛门等处的上皮细胞由外胚层发育而来。中胚层来源:间皮、内皮等上皮细胞由中胚层发育而来。内胚层来源:中耳、呼吸道、肺、胸腺、消化道、消化腺、膀胱、阴道、甲状腺、甲状旁腺等处的上皮细胞由内胚层发育而来。许多癌症起源于上皮细胞,如肝细胞癌、结直肠癌、乳腺癌、肺癌、胃癌、前列腺癌、卵巢癌和子宫内膜癌。这些癌症中的上皮细胞通常表现出细胞标志物的变化,如E-cadherin的缺失和N-cadherin、vimentin等间充质细胞标志物的表达上调。
    NIH/3T3 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:MDAPC2B Cells、MDA-MB 468 Cells、MX-1 Cells
    PBMC Cells;背景说明:外周血单核 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:kms 11 Cells、LLC-MK-2 Cells、526-mel Cells
    COLO678 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:P30 OHK Cells、PANC403 Cells、H9 Cells
    KATO III Cells;背景说明:详见相关文献介绍;传代方法:1:2传代。3天内可长满。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:MES 23.5 Cells、PLC8024 Cells、TGW-I-nu Cells
    ARO81 Cells;背景说明:甲状腺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SN12C Cells、Y3-Ag1,2,3 Cells、Baby Hamster Kidney from litter No. 21 Cells
    MDA-175 Cells;背景说明:该细胞源自一位54岁患有乳腺导管癌白人女性的胸腔积液。;传代方法:1:2—1:6传代,每周换液2—3次;生长特性:松散贴壁生长;形态特性:上皮细胞样;相关产品有:Tn-5 Cells、KY180 Cells、M4e Cells
    P3HR1-BL Cells;背景说明:详见相关文献介绍;传代方法:每2-3天换液;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:Pan02 Cells、MCA-205 Cells、SK-ES-1 Cells
    OVCAR-433 Cells;背景说明:卵巢癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:MDA-MB-435 S Cells、BC3H1 Cells、Hs578Bst Cells
    VK2/E6E7 Cells;背景说明:阴道;上皮细胞;HPV16转化;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:ESC Cells、H660 Cells、C17 Cells
    A9(GM7151)-3 Cells(拥有STR基因鉴定图谱)
    Abcam Raji CD36 KO Cells(拥有STR基因鉴定图谱)
    BAC1 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line RRR354 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line YHD355 Cells(拥有STR基因鉴定图谱)
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    CGFR-Ca-3 Cells(拥有STR基因鉴定图谱)
    DA01583 Cells(拥有STR基因鉴定图谱)
    DHMCi003-B Cells(拥有STR基因鉴定图谱)
    GM02797 Cells(拥有STR基因鉴定图谱)
    B5537SKIN Cells;背景说明:成纤维 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:MLTC-1 Cells、HT 29 Cells、OVCAR-3 Cells
    NCI-H1373 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:4传代;2-3天换液1次。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:HLMVEC Cells、Colon 38 Cells、RIN Cl-5F Cells
    SW1990 Cells;背景说明:胰腺癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SNU1040 Cells、CACO2 Cells、C-4I Cells
    rRMECs Cells;背景说明:视网膜微血管;内皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:NEC-8 Cells、751-NA Cells、U 937 Cells
    NCIH2106 Cells;背景说明:详见相关文献介绍;传代方法:每周换液2次。;生长特性:悬浮生长;形态特性:详见产品说明;相关产品有:GM03190 Cells、RCF Cells、MN 60 Cells
    H-1404 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:RPMI.8226 Cells、CCC-HSF-1 Cells、HTR-8 Cells
    SNU398 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:G 401 Cells、SKUT-1 Cells、SK-N-BE(2)-C Cells
    DanG Cells;背景说明:胰腺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:207 Cells、TGW Cells、T2(174 x CEM.T2) Cells
    NHEK Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:MDA 435 Cells、526 mel Cells、OCI-Ly 18 Cells
    GDM1 Cells;背景说明:详见相关文献介绍;传代方法:2-3天换液1次。;生长特性:悬浮生长;形态特性:淋巴母细胞样 ;相关产品有:Jurkat-FHCRC Cells、WPMY-1 Cells、MKN-1 Cells
    RBMVEC Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:DoTc2 4510 Cells、G401 Cells、IPLB-SF-21-AE Cells
    PE/CA-PJ34 (clone C12) Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:MOLT 4 Cells、Swiss-3T3 Cells、H-2087 Cells
    COLO 678 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:OVCA-432 Cells、NCIH295R Cells、Panc-1-P Cells
    4T1-mNIS-Neo/eGFP-Puro Cells(拥有STR基因鉴定图谱)
    MGH-UI Cells;背景说明:膀胱癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:ASH3 Cells、Bovine Turbinate Cells、SK-MEL3 Cells
    DLD-1人结直肠腺癌上皮传代细胞活性强|送STR图谱
    3AO Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:TH1 Cells、H711 Cells、RN Cells
    SKLMS1 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:5传代,2-3天换液1次。;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:SCLC-21H Cells、PLA 802 Cells、L5178Y TK+/-3.7.2c Cells
    SUM102PT Cells;背景说明:乳腺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:H-920 Cells、TE 354.T Cells、Chang liver Cells
    GM-215 Cells;背景说明:肺;自发永生;雄性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:H2286 Cells、KP-N-YN Cells、MonoMac 6 Cells
    343 MG Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:SUD6 Cells、alpha-TC1.6 Cells、H-747 Cells
    SKGT2 Cells;背景说明:胃底癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Hs 895 T Cells、SK LU 1 Cells、TE 32 Cells
    NCI H157 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:Hs-606-T Cells、HPAF/CD18 Cells、KGN Cells
    GM11838 Cells(拥有STR基因鉴定图谱)
    HAP1 DHCR7 (-) 2 Cells(拥有STR基因鉴定图谱)
    8402 Cells;背景说明:急性T淋巴细胞白血病;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:VMCUB1 Cells、BMDC Cells、WM 2664 Cells
    CEMO-1 Cells;背景说明:急性B淋巴细胞白血病;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:HCC-1395 Cells、MADB 106 Cells、NUGC-3 Cells
    MOLP8 Cells;背景说明:浆细胞骨髓瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:D341MD Cells、LX-2 Cells、McCoy B Cells
    NCI-H1770 Cells;背景说明:详见相关文献介绍;传代方法:随细胞的生长而换液;生长特性:悬浮生长;形态特性:详见产品说明;相关产品有:SKGIIIA Cells、HuH28 Cells、TK.10 Cells
    COLO678 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:P30 OHK Cells、PANC403 Cells、H9 Cells
    Mv1Lu Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:P3X63-Ag8.653 Cells、KU-812 Cells、BIU-87 Cells
    University of Arizona Cell Culture-812 Cells;背景说明:该细胞是由Liebovitz A等于1986年从一名43岁的白人女性乳腺导管癌患者的乳腺切除肿瘤组织中分离建立的;手术前该病人曾接受过广泛的化疗。该细胞HER-2/neu癌基因序列有15倍的扩增;雌激素受体ER、孕激素受体PR和糖蛋白P阴性。;传代方法:1:3传代;5-7天1次。 ;生长特性:贴壁生长;形态特性:上皮样;相关产品有:WEHI 231 Cells、HCC-1143 Cells、NCIH460 Cells
    CL1.0 Cells;背景说明:肺癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:COR-L 105 Cells、M14-MEL Cells、MMAc-Serum Free Cells
    HH514-16 Cells(拥有STR基因鉴定图谱)
    IOSE-144 Cells(拥有STR基因鉴定图谱)
    MA-160 Cells(拥有STR基因鉴定图谱)
    ND07708 Cells(拥有STR基因鉴定图谱)
    PF-R Cells(拥有STR基因鉴定图谱)
    Ubigene HEK293 PTK2 KO Cells(拥有STR基因鉴定图谱)
    WHO NP199 Cells(拥有STR基因鉴定图谱)
    HCORDi001-I Cells(拥有STR基因鉴定图谱)
    TW 01 Cells;背景说明:鼻咽癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:A20 Cells、ECC-1 Cells、SC Cells
    MBMEC Cells;背景说明:脑微血管;内皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:CNLMG-B5537SKIN Cells、alphaTC1 Clone 6 Cells、UPCI:SCC90 Cells
    LTPA Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:NCIH244 Cells、HT-55 Cells、NCIH1299 Cells
    HCC1833 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:HBL-100 Cells、NGEC Cells、HUT-125 Cells
    Hs 729T Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:MDA175 Cells、3T3-F442A Cells、SW1463 Cells
    COLO320/DM Cells;背景说明:该细胞可产生5-羟色胺、去甲、、ACTH和甲状旁腺素。角蛋白、波形蛋白弱阳性。培养条件: RPMI 1640  10%FBS;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮+贴壁;形态特性:淋巴细胞;相关产品有:Pro-Lec1.3C Cells、Jurkat-FHCRC Cells、GOTO Cells
    HCC-78 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:H358 Cells、RPMC Cells、L-Wnt-3A Cells
    KU 19-19 Cells;背景说明:膀胱癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Bovine Turbinate Cells、NCIH2141 Cells、Caco-2BBe Cells
    TC-1[JHU-1] Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:OCI/AML5 Cells、BEL/FU Cells、MLA 144 Cells
    NCIH524 Cells;背景说明:该细胞1982年建系,源自非小细胞肺癌男性患者的转移淋巴结。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮生长;形态特性:圆形细胞;相关产品有:SDBMSC Cells、MDA-415 Cells、Kit225 Cells
    Colo-678 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:SupB15WT Cells、Hela-mock Cells、Biopsy xenograft of Pancreatic Carcinoma line-3 Cells
    COLO-738 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Roswell Park Memorial Institute 1846 Cells、M3 Clone M-3 Cells、GM05862 Cells
    SUM 190PT Cells;背景说明:乳腺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:LS174T Cells、HeLaS3 Cells、NE-1 Cells
    PK-136 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:NCI-H1876 Cells、NCI-H295 Cells、DHL-8 Cells
    COLO320DM Cells;背景说明:该细胞可产生5-羟色胺、去甲、、ACTH和甲状旁腺素。角蛋白、波形蛋白弱阳性。培养条件: RPMI 1640  10%FBS;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮+贴壁;形态特性:淋巴细胞;相关产品有:GC-1spg Cells、HFF Cells、HEL 92.1.7 Cells
    SES-Bma-01A Cells(拥有STR基因鉴定图谱)
    T-ALL1 Cells;背景说明:该细胞源于一名复发T-ALL(急性T淋巴细胞性白血病)的儿童的外周血;具有很强的细胞毒性,体内体外实验中都能破坏肿瘤细胞;IL-2可使细胞更好地生长;α/β TCR阳性,γ/δ TCR阴性;可产生IFNγ、TNF-α和GM-CSF。;传代方法:维持细胞密度在4×105-1×106 cells/ml之间,2-3天换液1次 ;生长特性:悬浮生长;形态特性:淋巴母细胞;相关产品有:RS(4;11) Cells、HFE-145 Cells、SKMel-5 Cells
    Fetal Human Colon Cells;背景说明:胎儿;结肠;自发永生;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:GM04154 Cells、PBMC Cells、SR786 Cells
    KCL-22 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:悬浮;形态特性:详见产品说明;相关产品有:Central Adrenergic TH-expressing a Cells、MKN28 Cells、SaOS Cells
    MKN 7 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:MCAEC Cells、COR-L279 Cells、JEG-3 Cells
    PC 61.5.3 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:alpha TC1 clone 6 Cells、SK-MEL-MeWo Cells、U-251-MG Cells
    Suzhou Human Glioma-44 Cells;背景说明:SHG-44细胞株源自一例2-3级前沿淋巴结星细胞瘤。染色体组型显示89.2%的超三倍体。在Wistar大鼠和裸鼠中接种都能成功。细胞含有神经系统特有的S-100蛋白和星细胞特有的GFA蛋白;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:成纤维细胞样;相关产品有:52PE Cells、H-157 Cells、B16 melanoma F10 Cells
    NCI-H2452 Cells;背景说明:详见相关文献介绍;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:SKMEL28 Cells、L1210 Cells、SCC-4 Cells
    PCI:SG-231 Cells;背景说明:肝内胆管癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SK-ES1 Cells、Hs 27 Cells、Hs 706.T Cells
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    CHL1 Cells;背景说明:详见相关文献介绍;传代方法:1:6—1:10传代;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:MBMEC Cells、NCI-H220 Cells、MDA157 Cells
    HCCLM3 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:HAEC Cells、NK92-MI Cells、HOP 92 Cells
    DAN-G Cells;背景说明:胰腺癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:aNK Cells、MH7A Cells、DanG Cells
    HCC1954 BL Cells;背景说明:外周血B淋巴细胞;EBV转化;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:Sun Yat-sen university Ophtalmic center-Retinoblastoma 50 Cells、LUDLU 1 Cells、BIU-87/Adr Cells
    GA-10(Clone 4) Cells;背景说明:详见相关文献介绍;传代方法:每周换液两次;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:HT 1197.T Cells、2B4-L Cells、MDA 231-LM2-4175 Cells
    BALB/3T3 (clone A31) Cells;背景说明:胚胎;成纤维;自发永生;雄性;BALB/c;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SW839 Cells、SK-MEL2 Cells、Leukemia L1210 Cells
    BayGenomics ES cell line RRR399 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line YHD388 Cells(拥有STR基因鉴定图谱)
    HYB-241 Cells(拥有STR基因鉴定图谱)
    PCRP-IRF3-1D11 Cells(拥有STR基因鉴定图谱)
    DLD-1人结直肠腺癌上皮传代细胞活性强|送STR图谱
    FKAd6 Cells(拥有STR基因鉴定图谱)
    HPS3887 Cells(拥有STR基因鉴定图谱)
    "    "PubMed=3335022
    Alley M.C., Scudiero D.A., Monks A., Hursey M.L., Czerwinski M.J., Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.
    Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.
    Cancer Res. 48:589-601(1988)

    PubMed=2041050; DOI=10.1093/jnci/83.11.757
    Monks A., Scudiero D.A., Skehan P., Shoemaker R.H., Paull K.D., Vistica D.T., Hose C.D., Langley J., Cronise P., Vaigro-Wolff A., Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.
    Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.
    J. Natl. Cancer Inst. 83:757-766(1991)

    PubMed=8422623; DOI=10.1002/1097-0142(19930115)71:2<315::AID-CNCR2820710208>3.0.CO;2-B
    Tibbetts L.M., Doremus C.M., Tzanakakis G.N., Vezeridis M.P.
    Liver metastases with 10 human colon carcinoma cell lines in nude mice and association with carcinoembryonic antigen production.
    Cancer 71:315-321(1993)

    PubMed=8464898; DOI=10.1073/pnas.90.7.2842; PMCID=PMC46192
    Browning M.J., Krausa P., Rowan A.J., Bicknell D.C., Bodmer J.G., Bodmer W.F.
    Tissue typing the HLA-A locus from genomic DNA by sequence-specific PCR: comparison of HLA genotype and surface expression on colorectal tumor cell lines.
    Proc. Natl. Acad. Sci. U.S.A. 90:2842-2845(1993)

    PubMed=7874267; DOI=10.1007/BF02349278
    Ikuta S., Itoh F., Hinoda Y., Toyota M., Makiguchi Y., Imai K., Yachi A.
    Expression of cytoskeletal-associated protein tyrosine phosphatase PTPH1 mRNA in human hepatocellular carcinoma.
    J. Gastroenterol. 29:727-732(1994)

    PubMed=7972006; DOI=10.1073/pnas.91.23.11045; PMCID=PMC45163
    Okamoto A., Demetrick D.J., Spillare E.A., Hagiwara K., Hussain S.P., Bennett W.P., Forrester K., Gerwin B.I., Serrano M., Beach D.H., Harris C.C.
    Mutations and altered expression of p16INK4 in human cancer.
    Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994)

    PubMed=8197130; DOI=10.1073/pnas.91.11.4751; PMCID=PMC43866
    Bicknell D.C., Rowan A.J., Bodmer W.F.
    Beta 2-microglobulin gene mutations: a study of established colorectal cell lines and fresh tumors.
    Proc. Natl. Acad. Sci. U.S.A. 91:4751-4755(1994)

    PubMed=7621404; DOI=10.1016/0165-4608(94)00225-z
    Chen T.-R., Dorotinsky C.S., McGuire L.J., Macy M.L., Hay R.J.
    DLD-1 and HCT-15 cell lines derived separately from colorectal carcinomas have totally different chromosome changes but the same genetic origin.
    Cancer Genet. Cytogenet. 81:103-108(1995)

    PubMed=7651727
    Kastrinakis W.V., Ramchurren N., Rieger K.M., Hess D.T., Loda M., Steele G., Summerhayes I.C.
    Increased incidence of p53 mutations is associated with hepatic metastasis in colorectal neoplastic progression.
    Oncogene 11:647-652(1995)

    PubMed=9290701; DOI=10.1002/(SICI)1098-2744(199708)19:4<243::AID-MC5>3.0.CO;2-D
    Jia L.-Q., Osada M., Ishioka C., Gamo M., Ikawa S., Suzuki T., Shimodaira H., Niitani T., Kudo T., Akiyama M., Kimura N., Matsuo M., Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.
    Screening the p53 status of human cell lines using a yeast functional assay.
    Mol. Carcinog. 19:243-253(1997)

    PubMed=9294210; DOI=10.1073/pnas.94.19.10330; PMCID=PMC23362
    Ilyas M., Tomlinson I.P.M., Rowan A.J., Pignatelli M., Bodmer W.F.
    Beta-catenin mutations in cell lines established from human colorectal cancers.
    Proc. Natl. Acad. Sci. U.S.A. 94:10330-10334(1997)

    PubMed=9515795
    Sparks A.B., Morin P.J., Vogelstein B., Kinzler K.W.
    Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer.
    Cancer Res. 58:1130-1134(1998)

    PubMed=9809040; DOI=10.1016/S0165-4608(98)00081-8
    Vermeulen S.J., Chen T.-R., Speleman F., Nollet F., Van Roy F.M., Mareel M.M.
    Did the four human cancer cell lines DLD-1, HCT-15, HCT-8, and HRT-18 originate from one and the same patient?
    Cancer Genet. Cytogenet. 107:76-79(1998)

    PubMed=10674020; DOI=10.1016/S0959-8049(99)00206-3
    Ku J.-L., Yoon K.-A., Kim D.-Y., Park J.-G.
    Mutations in hMSH6 alone are not sufficient to cause the microsatellite instability in colorectal cancer cell lines.
    Eur. J. Cancer 35:1724-1729(1999)

    PubMed=10612807; DOI=10.1002/(SICI)1098-2264(200002)27:2<183::AID-GCC10>3.0.CO;2-P; PMCID=PMC4721570
    Ghadimi B.M., Sackett D.L., Difilippantonio M.J., Schrock E., Neumann T., Jauho A., Auer G., Ried T.
    Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations.
    Genes Chromosomes Cancer 27:183-190(2000)

    PubMed=10700188; DOI=10.1038/73536
    Gayther S.A., Batley S.J., Linger L., Bannister A.J., Thorpe K., Chin S.-F., Daigo Y., Russell P., Wilson A., Sowter H.M., Delhanty J.D.A., Ponder B.A.J., Kouzarides T., Caldas C.
    Mutations truncating the EP300 acetylase in human cancers.
    Nat. Genet. 24:300-303(2000)

    PubMed=11226274; DOI=10.1073/pnas.041603298; PMCID=PMC30173
    Abdel-Rahman W.M., Katsura K., Rens W., Gorman P.A., Sheer D., Bicknell D.C., Bodmer W.F., Arends M.J., Wyllie A.H., Edwards P.A.W.
    Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement.
    Proc. Natl. Acad. Sci. U.S.A. 98:2538-2543(2001)

    PubMed=11414198; DOI=10.1007/s004320000207
    Lahm H., Andre S., Hoeflich A., Fischer J.R., Sordat B., Kaltner H., Wolf E., Gabius H.-J.
    Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.
    J. Cancer Res. Clin. Oncol. 127:375-386(2001)

    PubMed=11416159; DOI=10.1073/pnas.121616198; PMCID=PMC35459
    Masters J.R.W., Thomson J.A., Daly-Burns B., Reid Y.A., Dirks W.G., Packer P., Toji L.H., Ohno T., Tanabe H., Arlett C.F., Kelland L.R., Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
    Short tandem repeat profiling provides an international reference standard for human cell lines.
    Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001)

    PubMed=11668190; DOI=10.1177/002215540104901105
    Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.
    Immunocytochemical analysis of cell lines derived from solid tumors.
    J. Histochem. Cytochem. 49:1369-1378(2001)

    PubMed=12068308; DOI=10.1038/nature00766
    Davies H.R., Bignell G.R., Cox C., Stephens P.J., Edkins S., Clegg S., Teague J.W., Woffendin H., Garnett M.J., Bottomley W., Davis N., Dicks E., Ewing R., Floyd Y., Gray K., Hall S., Hawes R., Hughes J., Kosmidou V., Menzies A., Mould C., Parker A., Stevens C., Watt S., Hooper S., Wilson R., Jayatilake H., Gusterson B.A., Cooper C.S., Shipley J.M., Hargrave D., Pritchard-Jones K., Maitland N.J., Chenevix-Trench G., Riggins G.J., Bigner D.D., Palmieri G., Cossu A., Flanagan A.M., Nicholson A., Ho J.W.C., Leung S.Y., Yuen S.T., Weber B.L., Seigler H.F., Darrow T.L., Paterson H.F., Marais R., Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.
    Mutations of the BRAF gene in human cancer.
    Nature 417:949-954(2002)

    PubMed=12615714
    Hempen P.M., Zhang L., Bansal R.K., Iacobuzio-Donahue C.A., Murphy K.M., Maitra A., Vogelstein B., Whitehead R.H., Markowitz S.D., Willson J.K.V., Yeo C.J., Hruban R.H., Kern S.E.
    Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers.
    Cancer Res. 63:994-999(2003)

    PubMed=16418264; DOI=10.1073/pnas.0510146103; PMCID=PMC1327731
    Liu Y., Bodmer W.F.
    Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.
    Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006)

    PubMed=16854228; DOI=10.1186/1476-4598-5-29; PMCID=PMC1550420
    Bandres Elizalde E.M., Cubedo E., Agirre X., Malumbres R., Zarate R., Ramirez N., Abajo A., Navarro A., Moreno I., Monzo M., Garcia-Foncillas J.
    Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.
    Mol. Cancer 5:29.1-29.10(2006)

    PubMed=18258742; DOI=10.1073/pnas.0712176105; PMCID=PMC2268141
    Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.
    Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.
    Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008)

    PubMed=19927377; DOI=10.1002/gcc.20730; PMCID=PMC2818350
    Knutsen T., Padilla-Nash H.M., Wangsa D., Barenboim-Stapleton L., Camps J., McNeil N.E., Difilippantonio M.J., Ried T.
    Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines.
    Genes Chromosomes Cancer 49:204-223(2010)

    PubMed=20570890; DOI=10.1158/0008-5472.CAN-10-0192; PMCID=PMC2943514
    Janakiraman M., Vakiani E., Zeng Z.-S., Pratilas C.A., Taylor B.S., Chitale D., Halilovic E., Wilson M., Huberman K., Ricarte Filho J.C.M., Persaud Y., Levine D.A., Fagin J.A., Jhanwar S.C., Mariadason J.M., Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.
    Genomic and biological characterization of exon 4 KRAS mutations in human cancer.
    Cancer Res. 70:5901-5911(2010)

    PubMed=20606684; DOI=10.1038/sj.bjc.6605780; PMCID=PMC2920028
    Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.
    5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.
    Br. J. Cancer 103:340-346(2010)

    PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

    PubMed=22490663; DOI=10.1016/j.bbrc.2012.03.122
    Saiki Y., Yoshino Y., Fujimura H., Manabe T., Kudo Y., Shimada M., Mano N., Nakano T., Lee Y., Shimizu S., Oba S., Fujiwara S., Shimizu H., Chen N., Nezhad Z.K., Jin G., Fukushige S., Sunamura M., Ishida M., Motoi F., Egawa S., Unno M., Horii A.
    DCK is frequently inactivated in acquired gemcitabine-resistant human cancer cells.
    Biochem. Biophys. Res. Commun. 421:98-104(2012)

    PubMed=23272949; DOI=10.1186/1755-8794-5-66; PMCID=PMC3543849
    Schlicker A., Beran G., Chresta C.M., McWalter G., Pritchard A., Weston S., Runswick S., Davenport S., Heathcote K., Castro D.A., Orphanides G., French T., Wessels L.F.A.
    Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines.
    BMC Med. Genomics 5:66.1-66.15(2012)

    PubMed=24042735; DOI=10.1038/oncsis.2013.35; PMCID=PMC3816225
    Ahmed D., Eide P.W., Eilertsen I.A., Danielsen S.A., Eknaes M., Hektoen M., Lind G.E., Lothe R.A.
    Epigenetic and genetic features of 24 colon cancer cell lines.
    Oncogenesis 2:e71.1-e71.8(2013)

    PubMed=24755471; DOI=10.1158/0008-5472.CAN-14-0013
    Mouradov D., Sloggett C., Jorissen R.N., Love C.G., Li S., Burgess A.W., Arango D., Strausberg R.L., Buchanan D., Wormald S., O'Connor L., Wilding J.L., Bicknell D.C., Tomlinson I.P.M., Bodmer W.F., Mariadason J.M., Sieber O.M.
    Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.
    Cancer Res. 74:3238-3247(2014)

    PubMed=25960936; DOI=10.4161/21624011.2014.954893; PMCID=PMC4355981
    Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
    A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
    OncoImmunology 3:e954893.1-e954893.12(2014)

    PubMed=25984343; DOI=10.1038/sdata.2014.35; PMCID=PMC4432652
    Cowley G.S., Weir B.A., Vazquez F., Tamayo P., Scott J.A., Rusin S., East-Seletsky A., Ali L.D., Gerath W.F.J., Pantel S.E., Lizotte P.H., Jiang G.-Z., Hsiao J., Tsherniak A., Dwinell E., Aoyama S., Okamoto M., Harrington W., Gelfand E.T., Green T.M., Tomko M.J., Gopal S., Wong T.C., Li H.-B., Howell S., Stransky N., Liefeld T., Jang D., Bistline J., Meyers B.H., Armstrong S.A., Anderson K.C., Stegmaier K., Reich M., Pellman D., Boehm J.S., Mesirov J.P., Golub T.R., Root D.E., Hahn W.C.
    Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
    Sci. Data 1:140035-140035(2014)

    PubMed=25485619; DOI=10.1038/nbt.3080
    Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
    A comprehensive transcriptional portrait of human cancer cell lines.
    Nat. Biotechnol. 33:306-312(2015)

    PubMed=25877200; DOI=10.1038/nature14397
    Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
    A resource for cell line authentication, annotation and quality control.
    Nature 520:307-311(2015)

    PubMed=25841592; DOI=10.1016/j.jprot.2015.03.019
    Piersma S.R., Knol J.C., de Reus I., Labots M., Sampadi B.K., Pham T.V., Ishihama Y., Verheul H.M.W., Jimenez C.R.
    Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines.
    J. Proteomics 127:247-258(2015)

    PubMed=25926053; DOI=10.1038/ncomms8002
    Medico E., Russo M., Picco G., Cancelliere C., Valtorta E., Corti G., Buscarino M., Isella C., Lamba S., Martinoglio B., Veronese S., Siena S., Sartore-Bianchi A., Beccuti M., Mottolese M., Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.
    The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.
    Nat. Commun. 6:7002.1-7002.10(2015)

    PubMed=25944804; DOI=10.1158/1078-0432.CCR-14-2457
    Bazzocco S., Dopeso H., Carton-Garcia F., Macaya I., Andretta E., Chionh F., Rodrigues P., Garrido M., Alazzouzi H., Nieto R., Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.
    Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.
    Clin. Cancer Res. 21:3695-3704(2015)

    PubMed=26295583; DOI=10.1371/journal.pone.0135958; PMCID=PMC4546578
    Vidyasekar P., Shyamsunder P., Arun R., Santhakumar R., Kapadia N.K., Kumar R., Verma R.S.
    Genome wide expression profiling of cancer cell lines cultured in microgravity reveals significant dysregulation of cell cycle and microRNA gene networks.
    PLoS ONE 10:E0135958-E0135958(2015)

    PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
    Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
    TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
    Genome Med. 7:118.1-118.7(2015)

    PubMed=26537799; DOI=10.1074/mcp.M115.051235; PMCID=PMC4762531
    Holst S., Deuss A.J.M., van Pelt G.W., van Vliet S.J., Garcia-Vallejo J.J., Koeleman C.A.M., Deelder A.M., Mesker W.E., Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.
    N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.
    Mol. Cell. Proteomics 15:124-140(2016)

    PubMed=28179481; DOI=10.1158/1535-7163.MCT-16-0578
    Tanaka N., Mashima T., Mizutani A., Sato A., Aoyama A., Gong B., Yoshida H., Muramatsu Y., Nakata K., Matsuura M., Katayama R., Nagayama S., Fujita N., Sugimoto Y., Seimiya H.
    APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer.
    Mol. Cancer Ther. 16:752-762(2017)

    PubMed=28192450; DOI=10.1371/journal.pone.0171435; PMCID=PMC5305277
    Fasterius E., Raso C., Kennedy S.A., Rauch N., Lundin P., Kolch W., Uhlen M., Al-Khalili Szigyarto C.
    A novel RNA sequencing data analysis method for cell line authentication.
    PLoS ONE 12:E0171435-E0171435(2017)

    PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076
    Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.
    Characterization of human cancer cell lines by reverse-phase protein arrays.
    Cancer Cell 31:225-239(2017)

    PubMed=28683746; DOI=10.1186/s12943-017-0691-y; PMCID=PMC5498998
    Berg K.C.G., Eide P.W., Eilertsen I.A., Johannessen B., Bruun J., Danielsen S.A., Bjornslett M., Meza-Zepeda L.A., Eknaes M., Lind G.E., Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.
    Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.
    Mol. Cancer 16:116.1-116.16(2017)

    PubMed=29101300; DOI=10.15252/msb.20177701; PMCID=PMC5731344
    Frejno M., Zenezini Chiozzi R., Wilhelm M., Koch H., Zheng R.-S., Klaeger S., Ruprecht B., Meng C., Kramer K., Jarzab A., Heinzlmeir S., Johnstone E., Domingo E., Kerr D.J., Jesinghaus M., Slotta-Huspenina J., Weichert W., Knapp S., Feller S.M., Kuster B.
    Pharmacoproteomic characterisation of human colon and rectal cancer.
    Mol. Syst. Biol. 13:951-951(2017)"

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    图标文献和实验
    该产品被引用文献
    "PubMed=3335022
    Alley M.C., Scudiero D.A., Monks A., Hursey M.L., Czerwinski M.J., Fine D.L., Abbott B.J., Mayo J.G., Shoemaker R.H., Boyd M.R.
    Feasibility of drug screening with panels of human tumor cell lines using a microculture tetrazolium assay.
    Cancer Res. 48:589-601(1988)

    PubMed=2041050; DOI=10.1093/jnci/83.11.757
    Monks A., Scudiero D.A., Skehan P., Shoemaker R.H., Paull K.D., Vistica D.T., Hose C.D., Langley J., Cronise P., Vaigro-Wolff A., Gray-Goodrich M., Campbell H., Mayo J.G., Boyd M.R.
    Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines.
    J. Natl. Cancer Inst. 83:757-766(1991)

    PubMed=8422623; DOI=10.1002/1097-0142(19930115)71:2<315::AID-CNCR2820710208>3.0.CO;2-B
    Tibbetts L.M., Doremus C.M., Tzanakakis G.N., Vezeridis M.P.
    Liver metastases with 10 human colon carcinoma cell lines in nude mice and association with carcinoembryonic antigen production.
    Cancer 71:315-321(1993)

    PubMed=8464898; DOI=10.1073/pnas.90.7.2842; PMCID=PMC46192
    Browning M.J., Krausa P., Rowan A.J., Bicknell D.C., Bodmer J.G., Bodmer W.F.
    Tissue typing the HLA-A locus from genomic DNA by sequence-specific PCR: comparison of HLA genotype and surface expression on colorectal tumor cell lines.
    Proc. Natl. Acad. Sci. U.S.A. 90:2842-2845(1993)

    PubMed=7874267; DOI=10.1007/BF02349278
    Ikuta S., Itoh F., Hinoda Y., Toyota M., Makiguchi Y., Imai K., Yachi A.
    Expression of cytoskeletal-associated protein tyrosine phosphatase PTPH1 mRNA in human hepatocellular carcinoma.
    J. Gastroenterol. 29:727-732(1994)

    PubMed=7972006; DOI=10.1073/pnas.91.23.11045; PMCID=PMC45163
    Okamoto A., Demetrick D.J., Spillare E.A., Hagiwara K., Hussain S.P., Bennett W.P., Forrester K., Gerwin B.I., Serrano M., Beach D.H., Harris C.C.
    Mutations and altered expression of p16INK4 in human cancer.
    Proc. Natl. Acad. Sci. U.S.A. 91:11045-11049(1994)

    PubMed=8197130; DOI=10.1073/pnas.91.11.4751; PMCID=PMC43866
    Bicknell D.C., Rowan A.J., Bodmer W.F.
    Beta 2-microglobulin gene mutations: a study of established colorectal cell lines and fresh tumors.
    Proc. Natl. Acad. Sci. U.S.A. 91:4751-4755(1994)

    PubMed=7621404; DOI=10.1016/0165-4608(94)00225-z
    Chen T.-R., Dorotinsky C.S., McGuire L.J., Macy M.L., Hay R.J.
    DLD-1 and HCT-15 cell lines derived separately from colorectal carcinomas have totally different chromosome changes but the same genetic origin.
    Cancer Genet. Cytogenet. 81:103-108(1995)

    PubMed=7651727
    Kastrinakis W.V., Ramchurren N., Rieger K.M., Hess D.T., Loda M., Steele G., Summerhayes I.C.
    Increased incidence of p53 mutations is associated with hepatic metastasis in colorectal neoplastic progression.
    Oncogene 11:647-652(1995)

    PubMed=9290701; DOI=10.1002/(SICI)1098-2744(199708)19:4<243::AID-MC5>3.0.CO;2-D
    Jia L.-Q., Osada M., Ishioka C., Gamo M., Ikawa S., Suzuki T., Shimodaira H., Niitani T., Kudo T., Akiyama M., Kimura N., Matsuo M., Mizusawa H., Tanaka N., Koyama H., Namba M., Kanamaru R., Kuroki T.
    Screening the p53 status of human cell lines using a yeast functional assay.
    Mol. Carcinog. 19:243-253(1997)

    PubMed=9294210; DOI=10.1073/pnas.94.19.10330; PMCID=PMC23362
    Ilyas M., Tomlinson I.P.M., Rowan A.J., Pignatelli M., Bodmer W.F.
    Beta-catenin mutations in cell lines established from human colorectal cancers.
    Proc. Natl. Acad. Sci. U.S.A. 94:10330-10334(1997)

    PubMed=9515795
    Sparks A.B., Morin P.J., Vogelstein B., Kinzler K.W.
    Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer.
    Cancer Res. 58:1130-1134(1998)

    PubMed=9809040; DOI=10.1016/S0165-4608(98)00081-8
    Vermeulen S.J., Chen T.-R., Speleman F., Nollet F., Van Roy F.M., Mareel M.M.
    Did the four human cancer cell lines DLD-1, HCT-15, HCT-8, and HRT-18 originate from one and the same patient?
    Cancer Genet. Cytogenet. 107:76-79(1998)

    PubMed=10674020; DOI=10.1016/S0959-8049(99)00206-3
    Ku J.-L., Yoon K.-A., Kim D.-Y., Park J.-G.
    Mutations in hMSH6 alone are not sufficient to cause the microsatellite instability in colorectal cancer cell lines.
    Eur. J. Cancer 35:1724-1729(1999)

    PubMed=10612807; DOI=10.1002/(SICI)1098-2264(200002)27:2<183::AID-GCC10>3.0.CO;2-P; PMCID=PMC4721570
    Ghadimi B.M., Sackett D.L., Difilippantonio M.J., Schrock E., Neumann T., Jauho A., Auer G., Ried T.
    Centrosome amplification and instability occurs exclusively in aneuploid, but not in diploid colorectal cancer cell lines, and correlates with numerical chromosomal aberrations.
    Genes Chromosomes Cancer 27:183-190(2000)

    PubMed=10700188; DOI=10.1038/73536
    Gayther S.A., Batley S.J., Linger L., Bannister A.J., Thorpe K., Chin S.-F., Daigo Y., Russell P., Wilson A., Sowter H.M., Delhanty J.D.A., Ponder B.A.J., Kouzarides T., Caldas C.
    Mutations truncating the EP300 acetylase in human cancers.
    Nat. Genet. 24:300-303(2000)

    PubMed=11226274; DOI=10.1073/pnas.041603298; PMCID=PMC30173
    Abdel-Rahman W.M., Katsura K., Rens W., Gorman P.A., Sheer D., Bicknell D.C., Bodmer W.F., Arends M.J., Wyllie A.H., Edwards P.A.W.
    Spectral karyotyping suggests additional subsets of colorectal cancers characterized by pattern of chromosome rearrangement.
    Proc. Natl. Acad. Sci. U.S.A. 98:2538-2543(2001)

    PubMed=11414198; DOI=10.1007/s004320000207
    Lahm H., Andre S., Hoeflich A., Fischer J.R., Sordat B., Kaltner H., Wolf E., Gabius H.-J.
    Comprehensive galectin fingerprinting in a panel of 61 human tumor cell lines by RT-PCR and its implications for diagnostic and therapeutic procedures.
    J. Cancer Res. Clin. Oncol. 127:375-386(2001)

    PubMed=11416159; DOI=10.1073/pnas.121616198; PMCID=PMC35459
    Masters J.R.W., Thomson J.A., Daly-Burns B., Reid Y.A., Dirks W.G., Packer P., Toji L.H., Ohno T., Tanabe H., Arlett C.F., Kelland L.R., Harrison M., Virmani A.K., Ward T.H., Ayres K.L., Debenham P.G.
    Short tandem repeat profiling provides an international reference standard for human cell lines.
    Proc. Natl. Acad. Sci. U.S.A. 98:8012-8017(2001)

    PubMed=11668190; DOI=10.1177/002215540104901105
    Quentmeier H., Osborn M., Reinhardt J., Zaborski M., Drexler H.G.
    Immunocytochemical analysis of cell lines derived from solid tumors.
    J. Histochem. Cytochem. 49:1369-1378(2001)

    PubMed=12068308; DOI=10.1038/nature00766
    Davies H.R., Bignell G.R., Cox C., Stephens P.J., Edkins S., Clegg S., Teague J.W., Woffendin H., Garnett M.J., Bottomley W., Davis N., Dicks E., Ewing R., Floyd Y., Gray K., Hall S., Hawes R., Hughes J., Kosmidou V., Menzies A., Mould C., Parker A., Stevens C., Watt S., Hooper S., Wilson R., Jayatilake H., Gusterson B.A., Cooper C.S., Shipley J.M., Hargrave D., Pritchard-Jones K., Maitland N.J., Chenevix-Trench G., Riggins G.J., Bigner D.D., Palmieri G., Cossu A., Flanagan A.M., Nicholson A., Ho J.W.C., Leung S.Y., Yuen S.T., Weber B.L., Seigler H.F., Darrow T.L., Paterson H.F., Marais R., Marshall C.J., Wooster R., Stratton M.R., Futreal P.A.
    Mutations of the BRAF gene in human cancer.
    Nature 417:949-954(2002)

    PubMed=12615714
    Hempen P.M., Zhang L., Bansal R.K., Iacobuzio-Donahue C.A., Murphy K.M., Maitra A., Vogelstein B., Whitehead R.H., Markowitz S.D., Willson J.K.V., Yeo C.J., Hruban R.H., Kern S.E.
    Evidence of selection for clones having genetic inactivation of the activin A type II receptor (ACVR2) gene in gastrointestinal cancers.
    Cancer Res. 63:994-999(2003)

    PubMed=16418264; DOI=10.1073/pnas.0510146103; PMCID=PMC1327731
    Liu Y., Bodmer W.F.
    Analysis of p53 mutations and their expression in 56 colorectal cancer cell lines.
    Proc. Natl. Acad. Sci. U.S.A. 103:976-981(2006)

    PubMed=16854228; DOI=10.1186/1476-4598-5-29; PMCID=PMC1550420
    Bandres Elizalde E.M., Cubedo E., Agirre X., Malumbres R., Zarate R., Ramirez N., Abajo A., Navarro A., Moreno I., Monzo M., Garcia-Foncillas J.
    Identification by real-time PCR of 13 mature microRNAs differentially expressed in colorectal cancer and non-tumoral tissues.
    Mol. Cancer 5:29.1-29.10(2006)

    PubMed=18258742; DOI=10.1073/pnas.0712176105; PMCID=PMC2268141
    Emaduddin M., Bicknell D.C., Bodmer W.F., Feller S.M.
    Cell growth, global phosphotyrosine elevation, and c-Met phosphorylation through Src family kinases in colorectal cancer cells.
    Proc. Natl. Acad. Sci. U.S.A. 105:2358-2362(2008)

    PubMed=19927377; DOI=10.1002/gcc.20730; PMCID=PMC2818350
    Knutsen T., Padilla-Nash H.M., Wangsa D., Barenboim-Stapleton L., Camps J., McNeil N.E., Difilippantonio M.J., Ried T.
    Definitive molecular cytogenetic characterization of 15 colorectal cancer cell lines.
    Genes Chromosomes Cancer 49:204-223(2010)

    PubMed=20570890; DOI=10.1158/0008-5472.CAN-10-0192; PMCID=PMC2943514
    Janakiraman M., Vakiani E., Zeng Z.-S., Pratilas C.A., Taylor B.S., Chitale D., Halilovic E., Wilson M., Huberman K., Ricarte Filho J.C.M., Persaud Y., Levine D.A., Fagin J.A., Jhanwar S.C., Mariadason J.M., Lash A., Ladanyi M., Saltz L.B., Heguy A., Paty P.B., Solit D.B.
    Genomic and biological characterization of exon 4 KRAS mutations in human cancer.
    Cancer Res. 70:5901-5911(2010)

    PubMed=20606684; DOI=10.1038/sj.bjc.6605780; PMCID=PMC2920028
    Bracht K., Nicholls A.M., Liu Y., Bodmer W.F.
    5-fluorouracil response in a large panel of colorectal cancer cell lines is associated with mismatch repair deficiency.
    Br. J. Cancer 103:340-346(2010)

    PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

    PubMed=22490663; DOI=10.1016/j.bbrc.2012.03.122
    Saiki Y., Yoshino Y., Fujimura H., Manabe T., Kudo Y., Shimada M., Mano N., Nakano T., Lee Y., Shimizu S., Oba S., Fujiwara S., Shimizu H., Chen N., Nezhad Z.K., Jin G., Fukushige S., Sunamura M., Ishida M., Motoi F., Egawa S., Unno M., Horii A.
    DCK is frequently inactivated in acquired gemcitabine-resistant human cancer cells.
    Biochem. Biophys. Res. Commun. 421:98-104(2012)

    PubMed=23272949; DOI=10.1186/1755-8794-5-66; PMCID=PMC3543849
    Schlicker A., Beran G., Chresta C.M., McWalter G., Pritchard A., Weston S., Runswick S., Davenport S., Heathcote K., Castro D.A., Orphanides G., French T., Wessels L.F.A.
    Subtypes of primary colorectal tumors correlate with response to targeted treatment in colorectal cell lines.
    BMC Med. Genomics 5:66.1-66.15(2012)

    PubMed=24042735; DOI=10.1038/oncsis.2013.35; PMCID=PMC3816225
    Ahmed D., Eide P.W., Eilertsen I.A., Danielsen S.A., Eknaes M., Hektoen M., Lind G.E., Lothe R.A.
    Epigenetic and genetic features of 24 colon cancer cell lines.
    Oncogenesis 2:e71.1-e71.8(2013)

    PubMed=24755471; DOI=10.1158/0008-5472.CAN-14-0013
    Mouradov D., Sloggett C., Jorissen R.N., Love C.G., Li S., Burgess A.W., Arango D., Strausberg R.L., Buchanan D., Wormald S., O'Connor L., Wilding J.L., Bicknell D.C., Tomlinson I.P.M., Bodmer W.F., Mariadason J.M., Sieber O.M.
    Colorectal cancer cell lines are representative models of the main molecular subtypes of primary cancer.
    Cancer Res. 74:3238-3247(2014)

    PubMed=25960936; DOI=10.4161/21624011.2014.954893; PMCID=PMC4355981
    Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
    A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
    OncoImmunology 3:e954893.1-e954893.12(2014)

    PubMed=25984343; DOI=10.1038/sdata.2014.35; PMCID=PMC4432652
    Cowley G.S., Weir B.A., Vazquez F., Tamayo P., Scott J.A., Rusin S., East-Seletsky A., Ali L.D., Gerath W.F.J., Pantel S.E., Lizotte P.H., Jiang G.-Z., Hsiao J., Tsherniak A., Dwinell E., Aoyama S., Okamoto M., Harrington W., Gelfand E.T., Green T.M., Tomko M.J., Gopal S., Wong T.C., Li H.-B., Howell S., Stransky N., Liefeld T., Jang D., Bistline J., Meyers B.H., Armstrong S.A., Anderson K.C., Stegmaier K., Reich M., Pellman D., Boehm J.S., Mesirov J.P., Golub T.R., Root D.E., Hahn W.C.
    Parallel genome-scale loss of function screens in 216 cancer cell lines for the identification of context-specific genetic dependencies.
    Sci. Data 1:140035-140035(2014)

    PubMed=25485619; DOI=10.1038/nbt.3080
    Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
    A comprehensive transcriptional portrait of human cancer cell lines.
    Nat. Biotechnol. 33:306-312(2015)

    PubMed=25877200; DOI=10.1038/nature14397
    Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
    A resource for cell line authentication, annotation and quality control.
    Nature 520:307-311(2015)

    PubMed=25841592; DOI=10.1016/j.jprot.2015.03.019
    Piersma S.R., Knol J.C., de Reus I., Labots M., Sampadi B.K., Pham T.V., Ishihama Y., Verheul H.M.W., Jimenez C.R.
    Feasibility of label-free phosphoproteomics and application to base-line signaling of colorectal cancer cell lines.
    J. Proteomics 127:247-258(2015)

    PubMed=25926053; DOI=10.1038/ncomms8002
    Medico E., Russo M., Picco G., Cancelliere C., Valtorta E., Corti G., Buscarino M., Isella C., Lamba S., Martinoglio B., Veronese S., Siena S., Sartore-Bianchi A., Beccuti M., Mottolese M., Linnebacher M., Cordero F., Di Nicolantonio F., Bardelli A.
    The molecular landscape of colorectal cancer cell lines unveils clinically actionable kinase targets.
    Nat. Commun. 6:7002.1-7002.10(2015)

    PubMed=25944804; DOI=10.1158/1078-0432.CCR-14-2457
    Bazzocco S., Dopeso H., Carton-Garcia F., Macaya I., Andretta E., Chionh F., Rodrigues P., Garrido M., Alazzouzi H., Nieto R., Sanchez A., Schwartz S. Jr., Bilic J., Mariadason J.M., Arango D.
    Highly expressed genes in rapidly proliferating tumor cells as new targets for colorectal cancer treatment.
    Clin. Cancer Res. 21:3695-3704(2015)

    PubMed=26295583; DOI=10.1371/journal.pone.0135958; PMCID=PMC4546578
    Vidyasekar P., Shyamsunder P., Arun R., Santhakumar R., Kapadia N.K., Kumar R., Verma R.S.
    Genome wide expression profiling of cancer cell lines cultured in microgravity reveals significant dysregulation of cell cycle and microRNA gene networks.
    PLoS ONE 10:E0135958-E0135958(2015)

    PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
    Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
    TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
    Genome Med. 7:118.1-118.7(2015)

    PubMed=26537799; DOI=10.1074/mcp.M115.051235; PMCID=PMC4762531
    Holst S., Deuss A.J.M., van Pelt G.W., van Vliet S.J., Garcia-Vallejo J.J., Koeleman C.A.M., Deelder A.M., Mesker W.E., Tollenaar R.A.E.M., Rombouts Y., Wuhrer M.
    N-glycosylation profiling of colorectal cancer cell lines reveals association of fucosylation with differentiation and caudal type homebox 1 (CDX1)/villin mRNA expression.
    Mol. Cell. Proteomics 15:124-140(2016)

    PubMed=28179481; DOI=10.1158/1535-7163.MCT-16-0578
    Tanaka N., Mashima T., Mizutani A., Sato A., Aoyama A., Gong B., Yoshida H., Muramatsu Y., Nakata K., Matsuura M., Katayama R., Nagayama S., Fujita N., Sugimoto Y., Seimiya H.
    APC mutations as a potential biomarker for sensitivity to tankyrase inhibitors in colorectal cancer.
    Mol. Cancer Ther. 16:752-762(2017)

    PubMed=28192450; DOI=10.1371/journal.pone.0171435; PMCID=PMC5305277
    Fasterius E., Raso C., Kennedy S.A., Rauch N., Lundin P., Kolch W., Uhlen M., Al-Khalili Szigyarto C.
    A novel RNA sequencing data analysis method for cell line authentication.
    PLoS ONE 12:E0171435-E0171435(2017)

    PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076
    Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.
    Characterization of human cancer cell lines by reverse-phase protein arrays.
    Cancer Cell 31:225-239(2017)

    PubMed=28683746; DOI=10.1186/s12943-017-0691-y; PMCID=PMC5498998
    Berg K.C.G., Eide P.W., Eilertsen I.A., Johannessen B., Bruun J., Danielsen S.A., Bjornslett M., Meza-Zepeda L.A., Eknaes M., Lind G.E., Myklebost O., Skotheim R.I., Sveen A., Lothe R.A.
    Multi-omics of 34 colorectal cancer cell lines -- a resource for biomedical studies.
    Mol. Cancer 16:116.1-116.16(2017)

    PubMed=29101300; DOI=10.15252/msb.20177701; PMCID=PMC5731344
    Frejno M., Zenezini Chiozzi R., Wilhelm M., Koch H., Zheng R.-S., Klaeger S., Ruprecht B., Meng C., Kramer K., Jarzab A., Heinzlmeir S., Johnstone E., Domingo E., Kerr D.J., Jesinghaus M., Slotta-Huspenina J., Weichert W., Knapp S., Feller S.M., Kuster B.
    Pharmacoproteomic characterisation of human colon and rectal cancer.
    Mol. Syst. Biol. 13:951-951(2017)"
    相关实验
    • 细胞培养资料

      结构和功能活动上相似性大。细胞群是异质的(Heterogeneous),也即各细胞的遗传性状互不相同,细胞相互依存性。 2、传代期:初代培养细胞一经传代后便改称做细胞系(Cell Line)。在全生命期中此期的持续时间最长。在培养条件较好情况下,细胞增殖旺盛,并能维持二倍体核型,呈二倍体核型的细胞称二倍体细胞系(Diploid Cell Line)。为保持二倍体细胞性质,细胞应在初代培养期或传代后早期冻存。当前世界上常用细胞均在不出十代内冻存。如不冻存,则需反复传代以维持细胞的适宜密度,以利于生存

    图标技术资料

    需要更多技术资料 索取更多技术资料

    资料下载:

    产品(20).png 附 (下载 0 次)

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    ¥850
    上海冠导生物工程有限公司
    2025年07月13日询价
    询价
    上海哈灵生物科技有限公司
    2025年07月21日询价
    ¥800
    上海抚生实业有限公司
    2025年07月14日询价
    询价
    上海研生实业有限公司
    2025年12月17日询价
    ¥1580
    武汉华尔纳生物科技有限公司
    2025年07月15日询价
    文献支持
    DLD-1人结直肠腺癌上皮传代细胞活性强|送STR图谱
    ¥850 - 2150