MDA-MB-175 VII人乳腺癌细胞系
文献支持

MDA-MB-175 VII人乳腺癌细胞系

收藏
  • ¥850 - 5500
  • 冠导生物
  • MDA-MB-175 VII人乳腺癌细胞系
  • 美国、德国、欧洲等
  • 2025年07月11日
    avatar
  • 企业认证

    点击 QQ 联系

    • 详细信息
    • 文献和实验
    • 技术资料
    • 品系

      详见细胞说明资料

    • 细胞类型

      详见细胞说明资料

    • 肿瘤类型

      详见细胞说明资料

    • 供应商

      上海冠导生物工程有限公司

    • 库存

      ≥100瓶

    • 生长状态

      详见细胞说明资料

    • 年限

      详见细胞说明资料

    • 运输方式

      常温运输【复苏细胞】或干冰运输【冻存细胞】

    • 器官来源

      详见细胞说明资料

    • 是否是肿瘤细胞

      详见细胞说明资料

    • 细胞形态

      详见细胞说明资料

    • 免疫类型

      详见细胞说明资料

    • 物种来源

      详见细胞说明资料

    • 相关疾病

      详见细胞说明资料

    • 组织来源

      详见细胞说明资料

    • 英文名

      MDA-MB-175 VII人乳腺癌细胞系

    • 规格

      1*10(6)Cellls/瓶

    "MDA-MB-175 VII人乳腺癌细胞系
    传代比例:1:2-1:4(首次传代建议1:2)
    生长特性:贴壁生长
    换液周期:每周2-3次
    有一些细胞是数量多一点比较HAO生长,生长状态也比较HAO。这种一般是属于生长速度慢的细胞。譬如内皮细胞。而有一些是细胞是数量少一点细胞状态会生长的比较HAO,譬如巨噬细胞和某些肿瘤细胞。尤其是巨噬细胞,生长速度非常得快,贴壁速度很快,所以传代时就应该留很少量的细胞,这样细胞状态会比较HAO。并且巨噬细胞比较喜欢扎堆生长,而堆与堆之间是有空间的。如果长成相连在一起的一满片的时候,细胞形态基本上就会差了,老化的会比较多,对后期实验结果是不HAO的。所以在养细胞的时候应该摸索该细胞喜欢的生长空间密度问题。这个其实是有一个方法可以改善的。对于贴壁细胞,如果细胞形态不HAO,(或者细胞形态不清晰,表面似有异物等)可以在传代的时候进行如下操作:首先,倒掉旧的培养基,加入3ml新的培养基(有无血清的都可)洗涤一次,用滴管吸走,然后再加入3ml的培养基,进行预吹打,控制吹打力度,轻轻地大概沿着瓶底过一遍,然后吸走。这时侯再开始正式的消化、吹打。(巨噬细胞建议只吹打,不消化)其次,把吹打下来的细胞悬加入到新的培养瓶内,培养瓶事先加入培养基,放入培养箱内培养,按时间点观察细胞贴壁情况。10分钟观察一次,20分钟,30分钟观察一次。选择一个时间点,已经有部分细胞贴壁的情况下,重新置于洁净台,底面朝上迅速倒出其中的培养基,加入3ml新培养基再轻轻洗一次。然后加入完全培养基培养。后续观察细胞生长情况以及形态。通常称之为“二传”。如果一次效果还不理想,可重复多次。直到找到细胞上乘形态。其中要注意,结合细胞喜欢的生长情况。喜欢多一点数量长得HAO的细胞你就等贴壁细胞比较多点的时候再传。反之亦然。
    MDA-MB-175 VII人乳腺癌细胞系
    背景信息:从一名患有导管癌的56岁黑人女性的胸腔积液中分离出来。
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    A375S2 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:H1341 Cells、PANC 1005 Cells、PNT1-a Cells
    NCIH740 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:95C Cells、NCI-H3255 Cells、CCC-HHM-2 Cells
    NCI-H1048 Cells;背景说明:详见相关文献介绍;传代方法:1:3-1:8传代;;生长特性:贴壁生长;形态特性:上皮细胞样;相关产品有:TE 85.T Cells、CMT 167 Cells、RAG Cells
    CCK-81 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:H6c7 Cells、MA-c Cells、Mouse Colon 38 Cells
    产品包装:复苏发货:T25培养瓶(一瓶)或冻存发货:1ml冻存管(两支)
    来源说明:细胞主要来源ATCC、ECACC、DSMZ、RIKEN等细胞库
    MDA-MB-175 VII人乳腺癌细胞系
    如何把细胞养的形态更HAO更漂亮。1.不同的细胞,喜欢的环境是不一样的。这个不仅仅是说培养基的不同,还有就是细胞生长的空间密度问题。有一些细胞是数量多一点比较HAO生长,生长状态也比较HAO。这种一般是属于生长速度慢的细胞。譬如内皮细胞。而有一些是细胞是数量少一点细胞状态会生长的比较HAO,譬如巨噬细胞和某些肿瘤细胞。尤其是巨噬细胞,生长速度非常得快,贴壁速度很快,所以传代时就应该留很少量的细胞,这样细胞状态会比较HAO。并且巨噬细胞比较喜欢扎堆生长,而堆与堆之间是有空间的。如果长成相连在一起的一满片的时候,细胞形态基本上就会差了,老化的会比较多,对后期实验结果是不HAO的。所以在养细胞的时候应该摸索该细胞喜欢的生长空间密度问题。2.对于有些人总是会遇到养的细胞形态怎么都不HAO的问题。这个其实是有一个方法可以改善的。对于贴壁细胞,如果细胞形态不HAO,(或者细胞形态不清晰,表面似有异物等)可以在传代的时候进行如下操作:首先,倒掉旧的培养基,加入3ml新的培养基(有无血清的都可)洗涤一次,用滴管吸走,然后再加入3ml的培养基,进行预吹打,控制吹打力度,轻轻地大概沿着瓶底过一遍,然后吸走。这时侯再开始正式的消化、吹打。(巨噬细胞我们只吹打,不消化的);其次,把吹打下来的细胞悬加入到新的培养瓶内,培养瓶事先加入培养基,放入培养箱内培养,按时间点观察细胞贴壁情况。10分钟观察一次,20分钟,30分钟观察一次。选择一个时间点,已经有部分细胞贴壁的情况下,重新置于洁净台,底面朝上迅速倒出其中的培养基,加入3ml新培养基再轻轻洗一次。然后加入完全培养基培养。后续观察细胞生长情况以及形态。我称之为“二传”。呵呵。如果一次效果还不理想,可重复多次。直到找到细胞完美形态。其中要注意,结合细胞喜欢的生长情况。喜欢多一点数量长得HAO的细胞你就等贴壁细胞比较多点的时候再传。反之亦然。3.关于培养瓶内加入培养基的量的问题。这个是要靠自己去摸索你所养的细胞的。并不是小的玻璃方瓶12ml,大方瓶14ml的。有些细胞反而是培养基少一点相反细胞形态会长得比较HAO。(可能也是竞争很大,有YOU胜劣汰吧。呵呵。)对于生长速度快的细胞,易生长的细胞加少一点培养基细胞形态会更HAO。但是要注意换掌握。4.关于选择培养瓶的问题。个人发现生长速度快的细胞在玻璃瓶内生长的状态会比一次性相对HAO一些。而对于同一种细胞,在其生长旺盛快速的时期在玻璃瓶内的生长状态也比内HAO。这可能是因为比玻璃瓶更容易贴壁。生长速度快的细胞在这种相对“更安逸”的环境里反而长得状态不如玻璃瓶HAO。所以对于生长速度慢的细胞如果想要更漂亮的细胞状态,比玻璃瓶会HAO,对于生长速度慢的细胞,玻璃瓶则会更HAO。同样,对于同一种细胞,在其生长速度慢的时候,会HAO一点,比如刚刚复苏的时候,或者原代培养的时候。而在其生长旺盛的时候,玻璃瓶则相对会HAO一点。
    GOTO Cells;背景说明:详见相关文献介绍;传代方法:10^4 cells/ml;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:MTC-TT Cells、OV 1063 Cells、KRC-Y Cells
    A2780 CP70 Cells;背景说明:卵巢癌;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Cor L88 Cells、B958 Cells、HELA-GFP Cells
    NCIH838 Cells;背景说明:该细胞于1984年建系,源于一位59岁患有非小细胞肺癌的白人男性吸烟者,从患者淋巴结转移灶分离而来。;传代方法:1:3-1:6传代;2-3天换液1次。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:MAVER1 Cells、KMM-1 Cells、NE-4C Cells
    物种来源:人源、鼠源等其它物种来源
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    形态特性:上皮细胞样
    细胞培养实验基本操作:①进无菌室前要彻底洗手,按规定穿隔离衣。开始操作前要用75%酒精棉球擦手、擦瓶口和烧灼瓶口。②操作者动作要轻,安装吸管帽、打开或封闭瓶口等操作应在火焰近处并经过烧灼进行。但要注意,金属器械不能在火焰中长时间烧灼,以防退火;烧过的器械要冷却后才能使用;已吸过培养的吸管不能再用火焰烧灼,因残留在吸管内的培养成分如蛋白质等烧焦后会产生有害物质,吸管再用时会将其带到培养中;胶塞、橡皮乳头及塑料的细胞培养用品过火焰是也不能时间太长,以免烧焦产生有毒气体,危害培养细胞,同时塑料细胞培养用品也会产生变形影响使用。③使用培养前不宜过早开瓶,开瓶后的培养应保持斜位,避免直立,以防止下落细菌的污染。不再使用的培养应立即封闭瓶口,培养的细胞在处理之前勿过早暴露在空气中。④操作时尽量不要谈话,咳嗽以防止来自唾沫和呼出的气流所造成的污染。⑤吸取培养、细胞悬时,应专管专用,一旦发现吸管口接触了手和其他污染物品应弃去,以防止污染扩大或造成培养物之间的交叉污染。⑥操作完毕后应整理HAO工作台面,用消毒水浸泡的纱布擦拭台面;防止细胞交叉污染:所有从别处转来的或是自己所建的细胞系都要早期留有的充足的冻存储备,一旦怀疑发生交叉污染,可做细胞遗传学方面的鉴定,如发现原有的细胞遗传物发生改变,可以复苏早期冻存的细胞使用。重要细胞系的传代工作应由两人独立进行;无菌室的彻底消毒①全面彻底擦洗无菌室。使用前应稀释即配即用。和酒精相比,Zui大的YOU点是便宜,而且可以稀释50倍用,而同样量的酒精价格可能是的几十倍。②甲醛熏蒸法:甲醛是一种广谱灭菌剂菌,其水溶和气体对各种细菌、芽孢及真菌等微生物均有杀灭作用。甲醛价廉,熏蒸消毒时不损坏衣服、家具、皮革、橡胶等。市售的甲醛水溶中一般含37-40%的甲醛。
    MCF-7ADR Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Walker-Ca.256 Cells、KASUMI1 Cells、EJ 138 Cells
    WIL2S Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:TGW Cells、HOC Cells、SF-539 Cells
    LM8 Cells;背景说明:Dunn's骨肉瘤;雌性;C3H;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:ECV 304 Cells、PK-13 Cells、Centre Antoine Lacassagne-62 Cells
    Lu-99A Cells;背景说明:详见相关文献介绍;传代方法:1:10传代;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:P3X63 Ag8 Cells、HPAF II Cells、CHO K1 Cells
    PLA-801C Cells;背景说明:肺巨细胞癌;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:FHL124 Cells、BTT739 Cells、PC-3 Cells
    CNLMG-B5537SKIN Cells;背景说明:成纤维 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:UPCI:SCC90 Cells、L 540 Cells、SK-N-BE2 Cells
    KTC-1 Cells;背景说明:甲状腺乳头状癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:RPMI 8226 Cells、UMC11 Cells、A 375 Cells
    RPMI 7951 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代,2天换液1次。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:X63.Ag8.653 Cells、BEAS 2B Cells、SU-DHL-4 Cells
    MIA-Pa-Ca-2 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:451-LU Cells、JEG-3 Cells、Panc 08.13 Cells
    HFF1 Cells;背景说明:详见相关文献介绍;传代方法:1:5-1:7传代;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:BNL 1ME A.7R.1 Cells、MB39 Cells、H295R-S1 Cells
    143TK- Cells;背景说明:详见相关文献介绍;传代方法:1:2—1:5传代;每周换液2-3次;生长特性:贴壁生长;形态特性:混合型;相关产品有:BE(2)C Cells、SK Hep1 Cells、WRL-68 Cells
    OCI-Ly19 Cells;背景说明:弥漫大B淋巴瘤;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:T84 Cells、K-1735 Cells、TNC-1B12B4 Cells
    KNS-81 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:H-1876 Cells、RS1 Cells、BRL 3A Cells
    SB Cells;背景说明:急性T淋巴细胞白血病;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:SU8686 Cells、KG-1 Cells、Tu 177 Cells
    F36P Cells;背景说明:详见相关文献介绍;传代方法:每周2次换液;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:MiaPaCa-2 Cells、WM-266-4 Cells、373MG Cells
    MDA-MB-175 VII人乳腺癌细胞系
    CTLL-2 Cells;背景说明:该细胞是源自C57BL/6的细胞毒性的T淋巴细胞。其生长以来IL-2。;传代方法:1:2传代;生长特性:悬浮生长;形态特性:详见产品说明;相关产品有:M14 Cells、CemT4 Cells、KLM-1 Cells
    SBC-5 Cells;背景说明:详见相关文献介绍;传代方法:每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:SACC-LM Cells、Soleus clone 8 Cells、253J-Bladder-V Cells
    Abcam HCT 116 AQP1 KO Cells(拥有STR基因鉴定图谱)
    AG04383 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line CSI089 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line RST293 Cells(拥有STR基因鉴定图谱)
    BFAE-12d Cells(拥有STR基因鉴定图谱)
    CHO/Kcnk3/Kcnk9 Cells(拥有STR基因鉴定图谱)
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    DA03001 Cells(拥有STR基因鉴定图谱)
    DA06573 Cells(拥有STR基因鉴定图谱)
    GM01221 Cells(拥有STR基因鉴定图谱)
    ANA1 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:悬浮生长;形态特性:详见产品说明;相关产品有:C-127 Cells、KBM7 Cells、H-2081 Cells
    Chinese Hamster Lung Cells;背景说明:广泛应用于染色体异常测试。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:上皮细胞样;相关产品有:H-1568 Cells、PNT1-a Cells、COLO-320-DM Cells
    NCIH820 Cells;背景说明:乳头状肺腺癌;淋巴结转移;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:HBE Cells、SNU-668 Cells、SKBr3 Cells
    MKN-45 Cells;背景说明:该细胞系由S Akiyama建立,源于一位35岁患有印戒细胞癌的女性的胃淋巴结。;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁+悬浮;形态特性:淋巴母细胞;相关产品有:SHSY-5Y Cells、HPB/ALL Cells、MCF-7 Cells
    H4-II-EC3 Cells;背景说明:在糖皮质激素、胰岛素或cAMP衍生物的诱导下可以产生酪酸基转移酶;可被逆转录病毒感染;可产生白蛋白、转铁蛋白、凝血酶原;在AxC大鼠中可以成瘤。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:SUM-190 Cells、SKRC-20 Cells、T241 Cells
    H-2087 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:4传代;每周换液2次。;生长特性:悬浮生长,有少数细胞疏松贴壁;形态特性:上皮样;相关产品有:PL-12 Cells、NIH/3T3 Cells、MDA-MB-453 Cells
    LLC-WRC 256 Cells;背景说明:乳腺癌;雌性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:HuNS1 Cells、HEEpiC Cells、MHCC-LM3 Cells
    293T/17 Cells;背景说明:胚肾;5型腺病毒及SV40转化;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SU-DHL-16 Cells、IPEC1 Cells、H1693 Cells
    HCC 2185 Cells;背景说明:转移性小叶乳腺癌;胸腔积液转移;女性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:H-1930 Cells、P3X63Ag8-6-5-3 Cells、N2a Cells
    KATO 3 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代。3天内可长满。;生长特性:贴壁生长;形态特性:上皮细胞;相关产品有:WTRL1 Cells、L929 Cells、HCC1438 Cells
    Tu-686 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:HEK-AD 293 Cells、Tohoku Hospital Pediatrics-1 Cells、ROS 17/2.8 Cells
    KYSE 70 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:REC Cells、Pt-K1 Cells、Kit225-K6 Cells
    ONS-76 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:3D4/21 Cells、SC Cells、KRC Y Cells
    34.1 Cells(拥有STR基因鉴定图谱)
    IMR 32 Cells;背景说明:该细胞是1967年4月由NicholsWW,LeeJ和DwightS建立,来源于一名13月龄白人男婴腹部肿块,临床诊断为神经母细胞瘤,伴有极少部位的类器官样分化。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:存在两种细胞类型,小的神经母细胞样细胞和大的透明成纤维样细胞;相关产品有:RenCa Cells、MDA-MB-134 VI Cells、H1048 Cells
    Lewis Lung Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:WEHI231 Cells、UMNSAH/DF#1 Cells、LIXC-002 Cells
    HSC-T6 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:Hs742T Cells、MM6 Cells、HOC-1 Cells
    HRIF Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:CV-1 Cells、Madin-Darby Bovine Kidney Cells、MCF-10A Cells
    AG 9 Cells;背景说明:皮下结缔组织;自发永生;雄性;C3H/An;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:Ramos-RA1 Cells、IAR20 Cells、NCIH345 Cells
    M14-MEL Cells;背景说明:详见相关文献介绍;传代方法:1:3传代;生长特性:混合生长;形态特性:详见产品说明;相关产品有:MDA-MB 361 Cells、SW982 Cells、CCD-966SK Cells
    OCI-LY-10 Cells;背景说明:弥漫大B细胞淋巴瘤;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:Tb1Lu Cells、OAW 42 Cells、Tn-5 Cells
    SB Cells;背景说明:急性T淋巴细胞白血病;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:SU8686 Cells、KG-1 Cells、Tu 177 Cells
    GM50106 Cells(拥有STR基因鉴定图谱)
    HAP1 PIAS2 (-) 2 Cells(拥有STR基因鉴定图谱)
    CHG5 Cells;背景说明:少突神经胶质瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:BE2-M17 Cells、OCI-Ly1 Cells、UCLA-SO-M20 Cells
    HSF10 Cells(拥有STR基因鉴定图谱)
    KOPT-4 Cells(拥有STR基因鉴定图谱)
    MoOV-16 Cells(拥有STR基因鉴定图谱)
    NYSCF-10005-478-478-Skin-mR-iPSC Cells(拥有STR基因鉴定图谱)
    RG-81 Cells(拥有STR基因鉴定图谱)
    Ubigene A-549 HEXA KO Cells(拥有STR基因鉴定图谱)
    UPCI-SCC-172 Cells(拥有STR基因鉴定图谱)
    HAP1 TRIM41 (-) 1 Cells(拥有STR基因鉴定图谱)
    GLRK 13 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:IB-RS-2 Cells、RCC_7860 Cells、67NR Cells
    SN12CPM6 Cells;背景说明:肾癌;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SV40-HCEC Cells、COLO 320HSR Cells、Hs-274-T Cells
    LTEP-s Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:IEC6 Cells、CCRF-CEM/S Cells、TR 146 Cells
    TEV-1 Cells;背景说明:滋养层;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:4175 Cells、Pan02 Cells、Normal fibroblast-10 Cells
    LYR Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:SU-DHL6 Cells、XuanWei Lung Cancer-05 Cells、HSC6 Cells
    LYR Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:SU-DHL6 Cells、XuanWei Lung Cancer-05 Cells、HSC6 Cells
    U266BL Cells;背景说明:详见相关文献介绍;传代方法:1:3传代,2-3天传一代;生长特性:悬浮生长 ;形态特性:淋巴母细胞样;相关产品有:HP615 Cells、RMG1 Cells、NOZ Cells
    MS1 Cells;背景说明:MS1是1994年建株的胰岛内皮细胞株。原代培养的胰岛内皮细胞用抗G418的温度敏感型SV40大T抗原(tsA-58-3)转染。抗性克隆用克隆环分离,并筛选吸收dil-Ac-LDL的。这株细胞保留了内皮细胞的许多特性,如吸收乙酰化LDL和表达八因子相关抗原及BEGF受体。;传代方法:消化3-5分钟。1:2。3天内可长满。;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:H1522 Cells、MS-751 Cells、YES-2 Cells
    CAKI.1 Cells;背景说明:该细胞超微结构中包含许多微绒毛、少许微丝、许多小线粒体、发达的高尔基休和内质网、许多脂滴和多层体、次级溶酶体,没有发现病毒颗粒。;传代方法:1:2-1:4传代;每周换液2-3次。;生长特性:贴壁生长;形态特性:上皮样;相关产品有:SK-ChA1 Cells、NKM1 Cells、HGMC Cells
    SU4 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:淋巴母细胞;相关产品有:NW38 Cells、MCA-38 Cells、CAL-39 Cells
    LYR Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:SU-DHL6 Cells、XuanWei Lung Cancer-05 Cells、HSC6 Cells
    Ly7 Cells;背景说明:弥漫大B淋巴瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:悬浮;形态特性:详见产品说明;相关产品有:CBRH-7919 Cells、H-748 Cells、MD Anderson-Metastatic Breast-453 Cells
    CAL12T Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:L6 Cells、SEG1 Cells、NCI H747 Cells
    EB-3 Cells;背景说明:该细胞源自一名3岁患有Burkitt's淋巴瘤的黑人男孩的B淋巴细胞,EBNA阳性。;传代方法:1:2-1:4传代,每周2-3次。;生长特性:悬浮生长;形态特性:淋巴母细胞样;相关产品有:SW 1783 Cells、SK-NM-C Cells、Y3-Ag 1.2.3 Cells
    H4-II-EC3 Cells;背景说明:在糖皮质激素、胰岛素或cAMP衍生物的诱导下可以产生酪酸基转移酶;可被逆转录病毒感染;可产生白蛋白、转铁蛋白、凝血酶原;在AxC大鼠中可以成瘤。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:SUM-190 Cells、SKRC-20 Cells、T241 Cells
    Subclone 707 DAP1 Cells(拥有STR基因鉴定图谱)
    P-19 Cells;背景说明:P19细胞株是从C3H/He小鼠中诱导的恶性畸胎瘤中建立的。该细胞在含有0.1mM的培养基中可高效率地克隆。该细胞具有多能性,在500nM维A酸诱导下可以分化成神经和神经胶质样细胞;在0.5%~1.0%二甲亚砜(DMSO)存在下,分化形成心脏和骨骼肌样细胞,但不形成神经或神经胶质样细胞;在DMSO和维A酸同时存在时,细胞的分化与只有维A酸一样。;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:HPAF/CD18 Cells、184A1 Cells、Spodoptera frugiperda clone 9 Cells
    GM02219D Cells;背景说明:MOLT-4与MOLT-3来源于一名19岁的男性急性淋巴细胞性白血病的复发患者,该患者前期接受过多种药物联合化疗。MOLT-4细胞系为T淋巴细胞起源,p53基因的第248位密码子有一个G→A突变,不表达p53,不表达免疫球蛋白或EB病毒;可产生高水平的末端脱氧核糖转移酶;表达CD1(49%),CD2(35%),CD3A(26%)B(33%)C(34%),CD4(55%),CD5(72%),CD6(22%),CD7(77%)。;传代方法:1:2传代;生长特性:悬浮生长;形态特性:淋巴母细胞样;圆形;相关产品有:RMa-bm Cells、WSU-DLCL2 Cells、HFT8810 Cells
    Mv 1 Lu Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Sf-21 Cells、C4-1 Cells、RL-65 Cells
    LM-TK- Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:RPTC Cells、ID8 Cells、GC-2spd(ts) Cells
    Panc04.03 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:上皮样;相关产品有:NK92 Cells、NF639 Cells、Rabbit Kidney 13 Cells
    PLA-802 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长;形态特性:详见产品说明;相关产品有:BC-025 Cells、H1930 Cells、SK-ChA1 Cells
    ┈订┈购┈热┈线:1┈5┈8┈0┈0┈5┈7┈6┈8┈6┈7【微信同号】┈Q┈Q:3┈3┈0┈7┈2┈0┈4┈2┈7┈1;
    PANC-1 Cells;背景说明:这株人胰腺癌细胞株源自于胰腺癌导管细胞,其倍增时间为52小时。染色体研究表明,该细胞染色体众数为63,包括3个独特标记的染色体和1个小环状染色体。该细胞的生长可被1unit/ml的左旋天冬酰胺酶抑制;能在软琼脂上生长;能在裸鼠上成瘤。;传代方法:1:2-1:4传代;每周2-3次。;生长特性:贴壁生长;形态特性:上皮样;多角形;相关产品有:HIEC-6 Cells、HIT T15 Cells、Leghorn Male Hepatoma cell line Cells
    MDA-MB-436 Cells;背景说明:该细胞源于一名43岁患有乳腺腺癌女性的胸腔积液。;传代方法:1:2传代,每周换液2—3次;生长特性:贴壁生长;形态特性:多角形;相关产品有:CCRF/CEM/0 Cells、MRASMC Cells、SCC090 Cells
    NR8383.1 Cells;背景说明:NR8383(正常大鼠,1983年8月3日)来源于肺灌洗时的正常大鼠肺泡巨噬细胞。细胞在gerbil肺细胞连续培养液存在下培养了大约8-9个月。随后,不再需要外源生长因子。通过有限稀释法从单个细胞克隆并亚克隆NR8383细胞,并三次用软琼脂亚克隆。细胞表现出巨噬细胞的特性,吞噬酵母多糖和铜绿,非特异性脂酶活性,Fc受体,氧化降解;分泌IL-1,TNFbeta和IL-6,可重复地响应外源生长因子。NR8383细胞响应博莱霉素,分泌TGFbeta前体。在博莱霉素刺激下,TGFbe;传代方法:1:2传代;生长特性:半贴壁生长;形态特性:巨噬细胞;相关产品有:NCIH520 Cells、COC1/CDDP Cells、A2058 Cells
    Panc 02 Cells;背景说明:详见相关文献介绍;传代方法:1:2传代;生长特性:贴壁生长 ;形态特性:详见产品说明;相关产品有:T47-D Cells、A-375.S2 Cells、P3X63NS1 Cells
    PIEC Cells;背景说明:髋动脉;内皮 Cells;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:SK-SH-SY5Y Cells、EFM-192B Cells、NCI-H2108 Cells
    Vero-76 Cells;背景说明:详见相关文献介绍;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁或悬浮,详见产品说明部分;形态特性:详见产品说明;相关产品有:Jurkat Clone E6-1 Cells、HCC-78 Cells、SKO007 Cells
    LU-65M Cells;背景说明:详见相关文献介绍;传代方法:1:10传代;生长特性:贴壁生长;形态特性:成纤维细胞;相关产品有:CA-46 Cells、HAVSMC Cells、Intestinal Porcine Epithelial Cell line-1 Cells
    MDA-MB-175 VII人乳腺癌细胞系
    T-CAM2 Cells;背景说明:睾丸精原细胞瘤;男性;传代方法:1:2-1:3传代;每周换液2-3次。;生长特性:贴壁;形态特性:详见产品说明;相关产品有:COLO-829 Cells、Dunn LM8 Cells、COLO 678 Cells
    BayGenomics ES cell line RRR118 Cells(拥有STR基因鉴定图谱)
    BayGenomics ES cell line YHD105 Cells(拥有STR基因鉴定图谱)
    HP6020 Cells(拥有STR基因鉴定图谱)
    PCRP-GBX1-2F8 Cells(拥有STR基因鉴定图谱)
    DP5-2 Cells(拥有STR基因鉴定图谱)
    HPS2085 Cells(拥有STR基因鉴定图谱)
    "    "PubMed=1911442; DOI=10.1016/0960-0760(91)90248-4
    Wild M.J., Rudland P.S., Back D.J.
    Metabolism of the oral contraceptive steroids ethynylestradiol and norgestimate by normal (Huma 7) and malignant (MCF-7 and ZR-75-1) human breast cells in culture.
    J. Steroid Biochem. Mol. Biol. 39:535-543(1991)

    PubMed=7902062
    de la Torre M., Hao X.-Y., Larsson R., Nygren P., Tsuruo T., Mannervik B., Bergh J.
    Characterization of four doxorubicin adapted human breast cancer cell lines with respect to chemotherapeutic drug sensitivity, drug resistance associated membrane proteins and glutathione transferases.
    Anticancer Res. 13:1425-1430(1993)

    DOI=10.1016/B978-0-12-333530-2.50009-5
    Leibovitz A.
    Cell lines from human breast.
    (In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.161-184; Academic Press; New York; USA (1994)

    PubMed=10862037; DOI=10.1002/1098-2264(200007)28:3<308::AID-GCC9>3.0.CO;2-B
    Kytola S., Rummukainen J., Nordgren A., Karhu R., Farnebo F., Isola J.J., Larsson C.
    Chromosomal alterations in 15 breast cancer cell lines by comparative genomic hybridization and spectral karyotyping.
    Genes Chromosomes Cancer 28:308-317(2000)

    PubMed=10969801
    Forozan F., Mahlamaki E.H., Monni O., Chen Y.-D., Veldman R., Jiang Y., Gooden G.C., Ethier S.P., Kallioniemi A.H., Kallioniemi O.-P.
    Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data.
    Cancer Res. 60:4519-4525(2000)

    PubMed=11044355; DOI=10.1054/bjoc.2000.1458; PMCID=PMC2408781
    Davidson J.M., Gorringe K.L., Chin S.-F., Orsetti B., Besret C., Courtay-Cahen C., Roberts I., Theillet C., Caldas C., Edwards P.A.W.
    Molecular cytogenetic analysis of breast cancer cell lines.
    Br. J. Cancer 83:1309-1317(2000)

    PubMed=11343771; DOI=10.1016/S0165-4608(00)00387-3
    Rummukainen J., Kytola S., Karhu R., Farnebo F., Larsson C., Isola J.J.
    Aberrations of chromosome 8 in 16 breast cancer cell lines by comparative genomic hybridization, fluorescence in situ hybridization, and spectral karyotyping.
    Cancer Genet. Cytogenet. 126:1-7(2001)

    PubMed=12353263; DOI=10.1002/gcc.10107
    Popovici C., Basset C., Bertucci F., Orsetti B., Adelaide J., Mozziconacci M.-J., Conte N., Murati A., Ginestier C., Charafe-Jauffret E., Ethier S.P., Lafage-Pochitaloff M., Theillet C., Birnbaum D., Chaffanet M.
    Reciprocal translocations in breast tumor cell lines: cloning of a t(3;20) that targets the FHIT gene.
    Genes Chromosomes Cancer 35:204-218(2002)

    PubMed=12800145; DOI=10.1002/gcc.10218
    Adelaide J., Huang H.-E., Murati A., Alsop A.E., Orsetti B., Mozziconacci M.-J., Popovici C., Ginestier C., Letessier A., Basset C., Courtay-Cahen C., Jacquemier J., Theillet C., Birnbaum D., Edwards P.A.W., Chaffanet M.
    A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.
    Genes Chromosomes Cancer 37:333-345(2003)

    PubMed=15677628; DOI=10.1093/carcin/bgi032
    Gorringe K.L., Chin S.-F., Pharoah P.D.P., Staines J.M., Oliveira C., Edwards P.A.W., Caldas C.
    Evidence that both genetic instability and selection contribute to the accumulation of chromosome alterations in cancer.
    Carcinogenesis 26:923-930(2005)

    PubMed=15767549; DOI=10.1158/1535-7163.MCT-04-0234
    Nakatsu N., Yoshida Y., Yamazaki K., Nakamura T., Dan S., Fukui Y., Yamori T.
    Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays.
    Mol. Cancer Ther. 4:399-412(2005)

    PubMed=16397213; DOI=10.1158/0008-5472.CAN-05-2853
    Elstrodt F., Hollestelle A., Nagel J.H.A., Gorin M., Wasielewski M., van den Ouweland A.M.W., Merajver S.D., Ethier S.P., Schutte M.
    BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants.
    Cancer Res. 66:41-45(2006)

    PubMed=16541312; DOI=10.1007/s10549-006-9186-z
    Wasielewski M., Elstrodt F., Klijn J.G.M., Berns E.M.J.J., Schutte M.
    Thirteen new p53 gene mutants identified among 41 human breast cancer cell lines.
    Breast Cancer Res. Treat. 99:97-101(2006)

    PubMed=17157791; DOI=10.1016/j.ccr.2006.10.008; PMCID=PMC2730521
    Neve R.M., Chin K., Fridlyand J., Yeh J., Baehner F.L., Fevr T., Clark L., Bayani N., Coppe J.-P., Tong F., Speed T., Spellman P.T., DeVries S., Lapuk A., Wang N.J., Kuo W.-L., Stilwell J.L., Pinkel D., Albertson D.G., Waldman F.M., McCormick F., Dickson R.B., Johnson M.D., Lippman M.E., Ethier S.P., Gazdar A.F., Gray J.W.
    A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.
    Cancer Cell 10:515-527(2006)

    PubMed=17334996; DOI=10.1002/gcc.20438
    Jonsson G., Staaf J., Olsson E., Heidenblad M., Vallon-Christersson J., Osoegawa K., de Jong P.J., Oredsson S.M., Ringner M., Hoglund M., Borg A.
    High-resolution genomic profiles of breast cancer cell lines assessed by tiling BAC array comparative genomic hybridization.
    Genes Chromosomes Cancer 46:543-558(2007)

    PubMed=18516279; DOI=10.1016/j.molonc.2007.02.004; PMCID=PMC2391005
    Kenny P.A., Lee G.Y., Myers C.A., Neve R.M., Semeiks J.R., Spellman P.T., Lorenz K., Lee E.H., Barcellos-Hoff M.H., Petersen O.W., Gray J.W., Bissell M.J.
    The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression.
    Mol. Oncol. 1:84-96(2007)

    PubMed=19582160; DOI=10.1371/journal.pone.0006146; PMCID=PMC2702084
    Kao J., Salari K., Bocanegra M., Choi Y.-L., Girard L., Gandhi J., Kwei K.A., Hernandez-Boussard T., Wang P., Gazdar A.F., Minna J.D., Pollack J.R.
    Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.
    PLoS ONE 4:E6146-E6146(2009)

    PubMed=19727395; DOI=10.1371/journal.pone.0006888; PMCID=PMC2731225
    Wadlow R.C., Wittner B.S., Finley S.A., Bergquist H., Upadhyay R., Finn S.P., Loda M., Mahmood U., Ramaswamy S.
    Systems-level modeling of cancer-fibroblast interaction.
    PLoS ONE 4:E6888-E6888(2009)

    DOI=10.25904/1912/1434
    Morrison B.J.
    Breast cancer stem cells: tumourspheres and implications for therapy.
    Thesis PhD (2010); Griffith University; Brisbane; Australia

    PubMed=19593635; DOI=10.1007/s10549-009-0460-8
    Hollestelle A., Nagel J.H.A., Smid M., Lam S., Elstrodt F., Wasielewski M., Ng S.S., French P.J., Peeters J.K., Rozendaal M.J., Riaz M., Koopman D.G., ten Hagen T.L.M., de Leeuw B.H.C.G.M., Zwarthoff E.C., Teunisse A.F.A.S., van der Spek P.J., Klijn J.G.M., Dinjens W.N.M., Ethier S.P., Clevers H.C., Jochemsen A.G., den Bakker M.A., Foekens J.A., Martens J.W.M., Schutte M.
    Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines.
    Breast Cancer Res. Treat. 121:53-64(2010)

    PubMed=20070913; DOI=10.1186/1471-2407-10-15; PMCID=PMC2836299
    Tsuji K., Kawauchi S., Saito S., Furuya T., Ikemoto K., Nakao M., Yamamoto S., Oka M., Hirano T., Sasaki K.
    Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: comparison of the CGH profiles between cancer cell lines and primary cancer tissues.
    BMC Cancer 10:15.1-15.10(2010)

    PubMed=21378333
    Ford C.H.J., Al-Bader M., Al-Ayadhi B., Francis I.
    Reassessment of estrogen receptor expression in human breast cancer cell lines.
    Anticancer Res. 31:521-527(2011)

    PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

    PubMed=22585861; DOI=10.1158/2159-8290.CD-11-0224; PMCID=PMC5057396
    Marcotte R., Brown K.R., Suarez Saiz F.J., Sayad A., Karamboulas K., Krzyzanowski P.M., Sircoulomb F., Medrano M., Fedyshyn Y., Koh J.L.-Y., van Dyk D., Fedyshyn B., Luhova M., Brito G.C., Vizeacoumar F.J., Vizeacoumar F.S., Datti A., Kasimer D., Buzina A., Mero P., Misquitta C., Normand J., Haider M., Ketela T., Wrana J.L., Rottapel R., Neel B.G., Moffat J.
    Essential gene profiles in breast, pancreatic, and ovarian cancer cells.
    Cancer Discov. 2:172-189(2012)

    PubMed=23601657; DOI=10.1186/bcr3415; PMCID=PMC3672661
    Riaz M., van Jaarsveld M.T.M., Hollestelle A., Prager-van der Smissen W.J.C., Heine A.A.J., Boersma A.W.M., Liu J.-J., Helmijr J.C.A., Ozturk B., Smid M., Wiemer E.A.C., Foekens J.A., Martens J.W.M.
    miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.
    Breast Cancer Res. 15:R33.1-R33.17(2013)

    PubMed=24094812; DOI=10.1016/j.ccr.2013.08.020; PMCID=PMC3931310
    Timmerman L.A., Holton T., Yuneva M., Louie R.J., Padro M., Daemen A., Hu M., Chan D.A., Ethier S.P., van 't Veer L.J., Polyak K., McCormick F., Gray J.W.
    Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target.
    Cancer Cell 24:450-465(2013)

    PubMed=24162158; DOI=10.1007/s10549-013-2743-3; PMCID=PMC3832776
    Prat A., Karginova O., Parker J.S., Fan C., He X.-P., Bixby L.M., Harrell J.C., Roman E., Adamo B., Troester M.A., Perou C.M.
    Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.
    Breast Cancer Res. Treat. 142:237-255(2013)

    PubMed=24176112; DOI=10.1186/gb-2013-14-10-r110; PMCID=PMC3937590
    Daemen A., Griffith O.L., Heiser L.M., Wang N.J., Enache O.M., Sanborn Z., Pepin F., Durinck S., Korkola J.E., Griffith M., Hur J.S., Huh N., Chung J., Cope L., Fackler M.J., Umbricht C.B., Sukumar S., Seth P., Sume V.P., Jakkula L.R., Lu Y.-L., Mills G.B., Cho R.J., Collisson E.A., van 't Veer L.J., Spellman P.T., Gray J.W.
    Modeling precision treatment of breast cancer.
    Genome Biol. 14:R110.1-R110.14(2013)

    PubMed=24389870; DOI=10.1038/srep03576; PMCID=PMC3880960
    Strauch M., Ludke A., Munch D., Laudes T., Galizia C.G., Martinelli E., Lavra L., Paolesse R., Ulivieri A., Catini A., Capuano R., Di Natale C.
    More than apples and oranges -- detecting cancer with a fruit fly's antenna.
    Sci. Rep. 4:3576-3576(2014)

    PubMed=25238572; DOI=10.1021/pr500727h
    Groessl M., Slany A., Bileck A., Gloessmann K., Kreutz D., Jaeger W., Pfeiler G., Gerner C.
    Proteome profiling of breast cancer biopsies reveals a wound healing signature of cancer-associated fibroblasts.
    J. Proteome Res. 13:4773-4782(2014)

    PubMed=25960936; DOI=10.4161/21624011.2014.954893; PMCID=PMC4355981
    Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
    A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
    OncoImmunology 3:e954893.1-e954893.12(2014)

    PubMed=25485619; DOI=10.1038/nbt.3080
    Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
    A comprehensive transcriptional portrait of human cancer cell lines.
    Nat. Biotechnol. 33:306-312(2015)

    PubMed=25699542; DOI=10.15252/msb.20145664; PMCID=PMC4358660
    Muellner M.K., Mair B., Ibrahim Y., Kerzendorfer C., Lechtermann H., Trefzer C., Klepsch F., Muller A.C., Leitner E., Macho-Maschler S., Superti-Furga G., Bennett K.L., Baselga J., Rix U., Kubicek S., Colinge J., Serra V., Nijman S.M.B.
    Targeting a cell state common to triple-negative breast cancers.
    Mol. Syst. Biol. 11:789-789(2015)

    PubMed=25877200; DOI=10.1038/nature14397
    Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
    A resource for cell line authentication, annotation and quality control.
    Nature 520:307-311(2015)

    PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
    Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
    TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
    Genome Med. 7:118.1-118.7(2015)

    PubMed=26759240; DOI=10.1158/0008-5472.CAN-15-2201
    Nakanishi Y., Walter K., Spoerke J.M., O'Brien C., Huw L.Y., Hampton G.M., Lackner M.R.
    Activating mutations in PIK3CB confer resistance to PI3K inhibition and define a novel oncogenic role for p110beta.
    Cancer Res. 76:1193-1203(2016)

    PubMed=27378269; DOI=10.1186/s12885-016-2452-5; PMCID=PMC4932681
    Kangaspeska S., Hultsch S., Jaiswal A., Edgren H., Mpindi J.P., Eldfors S., Bruck O., Aittokallio T., Kallioniemi O.-P.
    Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer.
    BMC Cancer 16:378.1-378.17(2016)

    PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076
    Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.
    Characterization of human cancer cell lines by reverse-phase protein arrays.
    Cancer Cell 31:225-239(2017)

    PubMed=28287265; DOI=10.1021/acs.jproteome.6b00470; PMCID=PMC5557415
    Yen T.-Y., Bowen S., Yen R., Piryatinska A., Macher B.A., Timpe L.C.
    Glycoproteins in claudin-low breast cancer cell lines have a unique expression profile.
    J. Proteome Res. 16:1391-1400(2017)

    PubMed=28889351; DOI=10.1007/s10549-017-4496-x
    Saunus J.M., Smart C.E., Kutasovic J.R., Johnston R.L., Kalita-de Croft P., Miranda M., Rozali E.N., Vargas A.C., Reid L.E., Lorsy E., Cocciardi S., Seidens T., McCart Reed A.E., Dalley A.J., Wockner L.F., Johnson J., Sarkar D., Askarian-Amiri M.E., Simpson P.T., Khanna K.K., Chenevix-Trench G., Al-Ejeh F., Lakhani S.R.
    Multidimensional phenotyping of breast cancer cell lines to guide preclinical research.
    Breast Cancer Res. Treat. 167:289-301(2018)

    PubMed=29273624; DOI=10.1101/gr.226019.117; PMCID=PMC5793780
    Franco H.L., Nagari A., Malladi V.S., Li W.-Q., Xi Y.-X., Richardson D., Allton K.L., Tanaka K., Li J., Murakami S., Keyomarsi K., Bedford M.T., Shi X.-B., Li W., Barton M.C., Dent S.Y.R., Kraus W.L.
    Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis.
    Genome Res. 28:159-170(2018)"

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    图标文献和实验
    该产品被引用文献
    "PubMed=1911442; DOI=10.1016/0960-0760(91)90248-4
    Wild M.J., Rudland P.S., Back D.J.
    Metabolism of the oral contraceptive steroids ethynylestradiol and norgestimate by normal (Huma 7) and malignant (MCF-7 and ZR-75-1) human breast cells in culture.
    J. Steroid Biochem. Mol. Biol. 39:535-543(1991)

    PubMed=7902062
    de la Torre M., Hao X.-Y., Larsson R., Nygren P., Tsuruo T., Mannervik B., Bergh J.
    Characterization of four doxorubicin adapted human breast cancer cell lines with respect to chemotherapeutic drug sensitivity, drug resistance associated membrane proteins and glutathione transferases.
    Anticancer Res. 13:1425-1430(1993)

    DOI=10.1016/B978-0-12-333530-2.50009-5
    Leibovitz A.
    Cell lines from human breast.
    (In book chapter) Atlas of human tumor cell lines; Hay R.J., Park J.-G., Gazdar A.F. (eds.); pp.161-184; Academic Press; New York; USA (1994)

    PubMed=10862037; DOI=10.1002/1098-2264(200007)28:3<308::AID-GCC9>3.0.CO;2-B
    Kytola S., Rummukainen J., Nordgren A., Karhu R., Farnebo F., Isola J.J., Larsson C.
    Chromosomal alterations in 15 breast cancer cell lines by comparative genomic hybridization and spectral karyotyping.
    Genes Chromosomes Cancer 28:308-317(2000)

    PubMed=10969801
    Forozan F., Mahlamaki E.H., Monni O., Chen Y.-D., Veldman R., Jiang Y., Gooden G.C., Ethier S.P., Kallioniemi A.H., Kallioniemi O.-P.
    Comparative genomic hybridization analysis of 38 breast cancer cell lines: a basis for interpreting complementary DNA microarray data.
    Cancer Res. 60:4519-4525(2000)

    PubMed=11044355; DOI=10.1054/bjoc.2000.1458; PMCID=PMC2408781
    Davidson J.M., Gorringe K.L., Chin S.-F., Orsetti B., Besret C., Courtay-Cahen C., Roberts I., Theillet C., Caldas C., Edwards P.A.W.
    Molecular cytogenetic analysis of breast cancer cell lines.
    Br. J. Cancer 83:1309-1317(2000)

    PubMed=11343771; DOI=10.1016/S0165-4608(00)00387-3
    Rummukainen J., Kytola S., Karhu R., Farnebo F., Larsson C., Isola J.J.
    Aberrations of chromosome 8 in 16 breast cancer cell lines by comparative genomic hybridization, fluorescence in situ hybridization, and spectral karyotyping.
    Cancer Genet. Cytogenet. 126:1-7(2001)

    PubMed=12353263; DOI=10.1002/gcc.10107
    Popovici C., Basset C., Bertucci F., Orsetti B., Adelaide J., Mozziconacci M.-J., Conte N., Murati A., Ginestier C., Charafe-Jauffret E., Ethier S.P., Lafage-Pochitaloff M., Theillet C., Birnbaum D., Chaffanet M.
    Reciprocal translocations in breast tumor cell lines: cloning of a t(3;20) that targets the FHIT gene.
    Genes Chromosomes Cancer 35:204-218(2002)

    PubMed=12800145; DOI=10.1002/gcc.10218
    Adelaide J., Huang H.-E., Murati A., Alsop A.E., Orsetti B., Mozziconacci M.-J., Popovici C., Ginestier C., Letessier A., Basset C., Courtay-Cahen C., Jacquemier J., Theillet C., Birnbaum D., Edwards P.A.W., Chaffanet M.
    A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.
    Genes Chromosomes Cancer 37:333-345(2003)

    PubMed=15677628; DOI=10.1093/carcin/bgi032
    Gorringe K.L., Chin S.-F., Pharoah P.D.P., Staines J.M., Oliveira C., Edwards P.A.W., Caldas C.
    Evidence that both genetic instability and selection contribute to the accumulation of chromosome alterations in cancer.
    Carcinogenesis 26:923-930(2005)

    PubMed=15767549; DOI=10.1158/1535-7163.MCT-04-0234
    Nakatsu N., Yoshida Y., Yamazaki K., Nakamura T., Dan S., Fukui Y., Yamori T.
    Chemosensitivity profile of cancer cell lines and identification of genes determining chemosensitivity by an integrated bioinformatical approach using cDNA arrays.
    Mol. Cancer Ther. 4:399-412(2005)

    PubMed=16397213; DOI=10.1158/0008-5472.CAN-05-2853
    Elstrodt F., Hollestelle A., Nagel J.H.A., Gorin M., Wasielewski M., van den Ouweland A.M.W., Merajver S.D., Ethier S.P., Schutte M.
    BRCA1 mutation analysis of 41 human breast cancer cell lines reveals three new deleterious mutants.
    Cancer Res. 66:41-45(2006)

    PubMed=16541312; DOI=10.1007/s10549-006-9186-z
    Wasielewski M., Elstrodt F., Klijn J.G.M., Berns E.M.J.J., Schutte M.
    Thirteen new p53 gene mutants identified among 41 human breast cancer cell lines.
    Breast Cancer Res. Treat. 99:97-101(2006)

    PubMed=17157791; DOI=10.1016/j.ccr.2006.10.008; PMCID=PMC2730521
    Neve R.M., Chin K., Fridlyand J., Yeh J., Baehner F.L., Fevr T., Clark L., Bayani N., Coppe J.-P., Tong F., Speed T., Spellman P.T., DeVries S., Lapuk A., Wang N.J., Kuo W.-L., Stilwell J.L., Pinkel D., Albertson D.G., Waldman F.M., McCormick F., Dickson R.B., Johnson M.D., Lippman M.E., Ethier S.P., Gazdar A.F., Gray J.W.
    A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes.
    Cancer Cell 10:515-527(2006)

    PubMed=17334996; DOI=10.1002/gcc.20438
    Jonsson G., Staaf J., Olsson E., Heidenblad M., Vallon-Christersson J., Osoegawa K., de Jong P.J., Oredsson S.M., Ringner M., Hoglund M., Borg A.
    High-resolution genomic profiles of breast cancer cell lines assessed by tiling BAC array comparative genomic hybridization.
    Genes Chromosomes Cancer 46:543-558(2007)

    PubMed=18516279; DOI=10.1016/j.molonc.2007.02.004; PMCID=PMC2391005
    Kenny P.A., Lee G.Y., Myers C.A., Neve R.M., Semeiks J.R., Spellman P.T., Lorenz K., Lee E.H., Barcellos-Hoff M.H., Petersen O.W., Gray J.W., Bissell M.J.
    The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression.
    Mol. Oncol. 1:84-96(2007)

    PubMed=19582160; DOI=10.1371/journal.pone.0006146; PMCID=PMC2702084
    Kao J., Salari K., Bocanegra M., Choi Y.-L., Girard L., Gandhi J., Kwei K.A., Hernandez-Boussard T., Wang P., Gazdar A.F., Minna J.D., Pollack J.R.
    Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.
    PLoS ONE 4:E6146-E6146(2009)

    PubMed=19727395; DOI=10.1371/journal.pone.0006888; PMCID=PMC2731225
    Wadlow R.C., Wittner B.S., Finley S.A., Bergquist H., Upadhyay R., Finn S.P., Loda M., Mahmood U., Ramaswamy S.
    Systems-level modeling of cancer-fibroblast interaction.
    PLoS ONE 4:E6888-E6888(2009)

    DOI=10.25904/1912/1434
    Morrison B.J.
    Breast cancer stem cells: tumourspheres and implications for therapy.
    Thesis PhD (2010); Griffith University; Brisbane; Australia

    PubMed=19593635; DOI=10.1007/s10549-009-0460-8
    Hollestelle A., Nagel J.H.A., Smid M., Lam S., Elstrodt F., Wasielewski M., Ng S.S., French P.J., Peeters J.K., Rozendaal M.J., Riaz M., Koopman D.G., ten Hagen T.L.M., de Leeuw B.H.C.G.M., Zwarthoff E.C., Teunisse A.F.A.S., van der Spek P.J., Klijn J.G.M., Dinjens W.N.M., Ethier S.P., Clevers H.C., Jochemsen A.G., den Bakker M.A., Foekens J.A., Martens J.W.M., Schutte M.
    Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines.
    Breast Cancer Res. Treat. 121:53-64(2010)

    PubMed=20070913; DOI=10.1186/1471-2407-10-15; PMCID=PMC2836299
    Tsuji K., Kawauchi S., Saito S., Furuya T., Ikemoto K., Nakao M., Yamamoto S., Oka M., Hirano T., Sasaki K.
    Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: comparison of the CGH profiles between cancer cell lines and primary cancer tissues.
    BMC Cancer 10:15.1-15.10(2010)

    PubMed=21378333
    Ford C.H.J., Al-Bader M., Al-Ayadhi B., Francis I.
    Reassessment of estrogen receptor expression in human breast cancer cell lines.
    Anticancer Res. 31:521-527(2011)

    PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
    Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
    The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Nature 483:603-607(2012)

    PubMed=22585861; DOI=10.1158/2159-8290.CD-11-0224; PMCID=PMC5057396
    Marcotte R., Brown K.R., Suarez Saiz F.J., Sayad A., Karamboulas K., Krzyzanowski P.M., Sircoulomb F., Medrano M., Fedyshyn Y., Koh J.L.-Y., van Dyk D., Fedyshyn B., Luhova M., Brito G.C., Vizeacoumar F.J., Vizeacoumar F.S., Datti A., Kasimer D., Buzina A., Mero P., Misquitta C., Normand J., Haider M., Ketela T., Wrana J.L., Rottapel R., Neel B.G., Moffat J.
    Essential gene profiles in breast, pancreatic, and ovarian cancer cells.
    Cancer Discov. 2:172-189(2012)

    PubMed=23601657; DOI=10.1186/bcr3415; PMCID=PMC3672661
    Riaz M., van Jaarsveld M.T.M., Hollestelle A., Prager-van der Smissen W.J.C., Heine A.A.J., Boersma A.W.M., Liu J.-J., Helmijr J.C.A., Ozturk B., Smid M., Wiemer E.A.C., Foekens J.A., Martens J.W.M.
    miRNA expression profiling of 51 human breast cancer cell lines reveals subtype and driver mutation-specific miRNAs.
    Breast Cancer Res. 15:R33.1-R33.17(2013)

    PubMed=24094812; DOI=10.1016/j.ccr.2013.08.020; PMCID=PMC3931310
    Timmerman L.A., Holton T., Yuneva M., Louie R.J., Padro M., Daemen A., Hu M., Chan D.A., Ethier S.P., van 't Veer L.J., Polyak K., McCormick F., Gray J.W.
    Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target.
    Cancer Cell 24:450-465(2013)

    PubMed=24162158; DOI=10.1007/s10549-013-2743-3; PMCID=PMC3832776
    Prat A., Karginova O., Parker J.S., Fan C., He X.-P., Bixby L.M., Harrell J.C., Roman E., Adamo B., Troester M.A., Perou C.M.
    Characterization of cell lines derived from breast cancers and normal mammary tissues for the study of the intrinsic molecular subtypes.
    Breast Cancer Res. Treat. 142:237-255(2013)

    PubMed=24176112; DOI=10.1186/gb-2013-14-10-r110; PMCID=PMC3937590
    Daemen A., Griffith O.L., Heiser L.M., Wang N.J., Enache O.M., Sanborn Z., Pepin F., Durinck S., Korkola J.E., Griffith M., Hur J.S., Huh N., Chung J., Cope L., Fackler M.J., Umbricht C.B., Sukumar S., Seth P., Sume V.P., Jakkula L.R., Lu Y.-L., Mills G.B., Cho R.J., Collisson E.A., van 't Veer L.J., Spellman P.T., Gray J.W.
    Modeling precision treatment of breast cancer.
    Genome Biol. 14:R110.1-R110.14(2013)

    PubMed=24389870; DOI=10.1038/srep03576; PMCID=PMC3880960
    Strauch M., Ludke A., Munch D., Laudes T., Galizia C.G., Martinelli E., Lavra L., Paolesse R., Ulivieri A., Catini A., Capuano R., Di Natale C.
    More than apples and oranges -- detecting cancer with a fruit fly's antenna.
    Sci. Rep. 4:3576-3576(2014)

    PubMed=25238572; DOI=10.1021/pr500727h
    Groessl M., Slany A., Bileck A., Gloessmann K., Kreutz D., Jaeger W., Pfeiler G., Gerner C.
    Proteome profiling of breast cancer biopsies reveals a wound healing signature of cancer-associated fibroblasts.
    J. Proteome Res. 13:4773-4782(2014)

    PubMed=25960936; DOI=10.4161/21624011.2014.954893; PMCID=PMC4355981
    Boegel S., Lower M., Bukur T., Sahin U., Castle J.C.
    A catalog of HLA type, HLA expression, and neo-epitope candidates in human cancer cell lines.
    OncoImmunology 3:e954893.1-e954893.12(2014)

    PubMed=25485619; DOI=10.1038/nbt.3080
    Klijn C., Durinck S., Stawiski E.W., Haverty P.M., Jiang Z.-S., Liu H.-B., Degenhardt J., Mayba O., Gnad F., Liu J.-F., Pau G., Reeder J., Cao Y., Mukhyala K., Selvaraj S.K., Yu M.-M., Zynda G.J., Brauer M.J., Wu T.D., Gentleman R.C., Manning G., Yauch R.L., Bourgon R., Stokoe D., Modrusan Z., Neve R.M., de Sauvage F.J., Settleman J., Seshagiri S., Zhang Z.-M.
    A comprehensive transcriptional portrait of human cancer cell lines.
    Nat. Biotechnol. 33:306-312(2015)

    PubMed=25699542; DOI=10.15252/msb.20145664; PMCID=PMC4358660
    Muellner M.K., Mair B., Ibrahim Y., Kerzendorfer C., Lechtermann H., Trefzer C., Klepsch F., Muller A.C., Leitner E., Macho-Maschler S., Superti-Furga G., Bennett K.L., Baselga J., Rix U., Kubicek S., Colinge J., Serra V., Nijman S.M.B.
    Targeting a cell state common to triple-negative breast cancers.
    Mol. Syst. Biol. 11:789-789(2015)

    PubMed=25877200; DOI=10.1038/nature14397
    Yu M., Selvaraj S.K., Liang-Chu M.M.Y., Aghajani S., Busse M., Yuan J., Lee G., Peale F.V., Klijn C., Bourgon R., Kaminker J.S., Neve R.M.
    A resource for cell line authentication, annotation and quality control.
    Nature 520:307-311(2015)

    PubMed=26589293; DOI=10.1186/s13073-015-0240-5; PMCID=PMC4653878
    Scholtalbers J., Boegel S., Bukur T., Byl M., Goerges S., Sorn P., Loewer M., Sahin U., Castle J.C.
    TCLP: an online cancer cell line catalogue integrating HLA type, predicted neo-epitopes, virus and gene expression.
    Genome Med. 7:118.1-118.7(2015)

    PubMed=26759240; DOI=10.1158/0008-5472.CAN-15-2201
    Nakanishi Y., Walter K., Spoerke J.M., O'Brien C., Huw L.Y., Hampton G.M., Lackner M.R.
    Activating mutations in PIK3CB confer resistance to PI3K inhibition and define a novel oncogenic role for p110beta.
    Cancer Res. 76:1193-1203(2016)

    PubMed=27378269; DOI=10.1186/s12885-016-2452-5; PMCID=PMC4932681
    Kangaspeska S., Hultsch S., Jaiswal A., Edgren H., Mpindi J.P., Eldfors S., Bruck O., Aittokallio T., Kallioniemi O.-P.
    Systematic drug screening reveals specific vulnerabilities and co-resistance patterns in endocrine-resistant breast cancer.
    BMC Cancer 16:378.1-378.17(2016)

    PubMed=28196595; DOI=10.1016/j.ccell.2017.01.005; PMCID=PMC5501076
    Li J., Zhao W., Akbani R., Liu W.-B., Ju Z.-L., Ling S.-Y., Vellano C.P., Roebuck P., Yu Q.-H., Eterovic A.K., Byers L.A., Davies M.A., Deng W.-L., Gopal Y.N.V., Chen G., von Euw E.M., Slamon D.J., Conklin D., Heymach J.V., Gazdar A.F., Minna J.D., Myers J.N., Lu Y.-L., Mills G.B., Liang H.
    Characterization of human cancer cell lines by reverse-phase protein arrays.
    Cancer Cell 31:225-239(2017)

    PubMed=28287265; DOI=10.1021/acs.jproteome.6b00470; PMCID=PMC5557415
    Yen T.-Y., Bowen S., Yen R., Piryatinska A., Macher B.A., Timpe L.C.
    Glycoproteins in claudin-low breast cancer cell lines have a unique expression profile.
    J. Proteome Res. 16:1391-1400(2017)

    PubMed=28889351; DOI=10.1007/s10549-017-4496-x
    Saunus J.M., Smart C.E., Kutasovic J.R., Johnston R.L., Kalita-de Croft P., Miranda M., Rozali E.N., Vargas A.C., Reid L.E., Lorsy E., Cocciardi S., Seidens T., McCart Reed A.E., Dalley A.J., Wockner L.F., Johnson J., Sarkar D., Askarian-Amiri M.E., Simpson P.T., Khanna K.K., Chenevix-Trench G., Al-Ejeh F., Lakhani S.R.
    Multidimensional phenotyping of breast cancer cell lines to guide preclinical research.
    Breast Cancer Res. Treat. 167:289-301(2018)

    PubMed=29273624; DOI=10.1101/gr.226019.117; PMCID=PMC5793780
    Franco H.L., Nagari A., Malladi V.S., Li W.-Q., Xi Y.-X., Richardson D., Allton K.L., Tanaka K., Li J., Murakami S., Keyomarsi K., Bedford M.T., Shi X.-B., Li W., Barton M.C., Dent S.Y.R., Kraus W.L.
    Enhancer transcription reveals subtype-specific gene expression programs controlling breast cancer pathogenesis.
    Genome Res. 28:159-170(2018)"
    图标技术资料

    需要更多技术资料 索取更多技术资料

    资料下载:

    产品(58).jpg 附 (下载 0 次)

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    ¥550
    杭州囊萤科技有限公司
    2025年04月02日询价
    ¥800
    上海抚生实业有限公司
    2025年06月24日询价
    ¥850
    上海冠导生物工程有限公司
    2025年07月06日询价
    询价
    上海雅吉生物科技有限公司
    2025年07月14日询价
    询价
    上海哈灵生物科技有限公司
    2025年07月13日询价
    文献支持
    MDA-MB-175 VII人乳腺癌细胞系
    ¥850 - 5500