药物靶点发现与药物作用机制研究是生物芯片技术在药物研发中应用最为广泛的一个领域。在药物靶点发现和药物作用机制研究中所使用的生物芯片主要是指DNA芯片。在DNA芯片的表面,以微阵列的方式固定有寡核苷酸或cDNA。使用DNA 芯片可以对研究者感兴趣的基因或生物体整个基因组的基因表达进行测定。在当代药物开发过程中发现和选择合适的药物靶点是药物开发的第一步,也是药物筛选及药物定向合成的关键因素之一。人体是 ...
生物芯片在药物分析中的应用主要是指采用毛细管电泳芯片/质谱系统对化合物库、血样和尿样中的药物进行分析鉴定。毛细管电泳芯片/贡谱系统是指将毛细管电泳芯片和质谱联用的一套装置。毛细管电泳芯片进行样品的分离,而与芯片联用的质谱则有选择性的对分离成分进行检测。美国康奈尔大学的Wachs等发明了一种微型化的离子喷雾装置。这种装置适合于与基于芯片的分离装置、多孔板或带有待测样品残渣的表面联用。这种装置有两种版 ...
对药物进行毒性评价,是药物筛选过程中十分重要的一个环节。现在毒理学家多采用鼠为模型通过动物实验来确定药物的潜在毒性。这些方法需要使用大剂量的药物,花上几年时间,花费巨大。 DNA芯片技术可将药物毒性与基因表达特征联系起来,通过基因表达分析便可确定药物毒性,使得药物毒性或不期望出现的效应在临床实验前得以确认。用DNA芯片可以在一个实验中同时对成千上万个基因的表达情况进行分析,为研究化学或药物分子对生 ...
提纯蛋白质后,需要测定其最小抑菌浓度(MIC),有文献提到根据MIC测得的结果计算抑菌率: 抑菌率(%)= (阳性对照OD值—试验OD值) / (阳性对照OD值—阴性对照OD值 )X100 样品的MIC与同性质药物和一些常用药物的MIC进行比较才有意义,不能单纯通过自己样品的结果就判断出高低,并且不能只用一种细菌。要考虑用不同种类的细菌进行实验,还要做质控。根据抑菌率大小 ...
小鼠的饲养管理非常繁琐,要求饲养人员具有高度的责任心,随时检查小鼠状况,出现问题立即加以纠正。为了使饲养工作有条不紊,必须将各项操作统筹安排,建立固定的操作程序,使饲养人员不会遗漏某项操作,同时也便于管理人员随时检查。 1、饲喂 小鼠胃容量小,随时采食,是多餐习性的动物。成年鼠采食量一般为3~7克/天,幼鼠一般为1~3克/天。应每周添料3~4次,在鼠笼的料斗内应经常有足够量的新鲜干燥饲料,在小鼠大 ...
1、饲料(feed) 小鼠应饲喂全价营养颗粒饲料,饲料中应含一定比例的粗纤维,使成型饲料具一定的硬度,以便小鼠磨牙。同时应维持营养成分相对稳定,任何饲料配方或剂型的改变都要作为重大问题记入档案。 不同种类的小鼠有不同的营养标准,如纯系小鼠和种鼠的饲料所含蛋白质成分高于一般小鼠,DBA小鼠需要高蛋白质低脂肪的饲料。 2、饮水(drinking water) 小鼠的水代谢相当快,应保证足够的饮水。 一 ...
在过去的十几年里,随着科学的进步以及在巨大的经济利益驱使下,药物筛选技术得到了飞速的发展。在80年代中期(高通量筛选形成之初),每天只能筛选30种化合物,到90年代中期,每天可筛选1,500种化合物,而如今每天可筛选超过 100,000个化合物。高速、低成本的高通量筛选已成为当今药物筛选的主流,并逐渐向超高通量方向发展。在过去的几年中,世界上著名的制药公司纷纷与以高通量药物筛选技术为核心的中小型生 ...
小鼠对环境的适应性的自体调节能力和疾病抗御能力较其他实验动物差,而小鼠的品种和品系繁多,各个品种和品系都有自己的特殊要求,因此必须根据实际情况给予一个清洁舒适的生活环境。 不同等级的小鼠应生活在相应的设施中。 小鼠临界温度为低温10℃,高温37℃,温度中性范围30~33℃。 饲养环境控制应达到如下要求:温度18~29℃;相对湿度40~70%;最好控制在18~22℃湿度50~60%。 一般小鼠饲养盒 ...
药物基因组学是在基因组学的基础上研究不个体对药物反应的差异以便针对不同的基因型“量身定做”药物,从而将药物的药效充分发挥而不良反应减少到最小。其优点为:①在进入临床试验前,药物基因组学可以通过化合物对基因多态性的影响挑选先导物,从而降低由于药效的不稳定导致的失败几率。②在Ⅰ期临床试验中,个体基因型可以预见基因多态性造成的药物代谢动力学差异。③由于药物作用靶蛋白的差异反映在基 ...
1、不同鼠群的管理 不同的鼠群,管理方式、方法或要求是不同的。核心种鼠群担负着为生产鼠群提供种鼠的任务。管理上要求比较细致。当采用一种公鼠与五只种母鼠循环配种时,种公鼠与种母鼠在同一鼠罐中同居10天,然后将怀孕种母鼠单罐饲养,再使种公鼠与另一鼠罐的种母鼠同居10天。依此类推,循环往复进行。根据需要和培育方向,有计划地配种、留种。留种时按1:1的比例进行选留,多余仔鼠予以淘汰。选留的仔鼠,要延长哺乳 ...
1 DNA方阵的构建 选择硅片、玻璃片、瓷片或聚丙烯膜、尼龙膜等支持物,并作相应处理,然后采用光导化学合成和照相平板印刷技术可在硅片等表面合成寡核苷酸探针,或者通过液相化学合成寡核苷酸链探针,或PCR技术扩增基因序列,再纯化、定量分析,由阵列复制器(arraying and replicating device ARD),或阵列机(arrayer)及电脑控制的机器人,准确、快速地将不同探针样品定 ...
K100C型全自动表面界面张力仪工作原理目前,人们对物质的本性认识越来越深刻,因此,对科学家和科技工作者,物质边界层的研究显得更为重要,通常,多相系统的各相之间,存在着界面,一般水的界面是气-液界面,称为表面,桌子的界面是气-固界面,液液的是液-液。。度量这个无规则排列的边界的物理量有表/界面张力和表面自由能。而分析界面的最有效仪器就是“全自动表面/界面张力仪”。准确的表征 ...
用于病毒免疫标志物的平行检测与血清学分型 目前已发现数十种病毒可引起肝炎性损害,检测其相应的免疫标志物在人体中的存在及含量,对病因诊断与治疗意义重大。最新发展的蛋白质芯片技术原理类似于常规的酶联免疫反应原理,即将特异性抗原或抗体固定于载体,待测样本按比例稀释后与其上的抗原或抗体进行反应,在加上荧光标记的抗原或抗体,用计算机软件对荧光信号进行分析,即可获得准确的定性或定量结果。一张芯片上可分布上千甚 ...
所有的生物芯片技术都包含四个基本要点:芯片的制作、杂交或反应、测定或扫描、数据处理。生物芯片的技术核心是芯片的制备及反应信号的检测。1、芯片制备技术 目前制备芯片的方法基本上可分为两大类:一类是原位合成(in situ Synthesis);一类是合成后交联(post-synthesis attachment)。原位合成是目前制造高密度寡核苷酸芯片最为成功的方法。在制备基因芯片时要考 ...
1、什么是表面张力? 众所周知,我们可以根据分子间的互相吸引力来解释液体的性质。这种分子间的吸引力就被称之为分子内聚力或称范德华力。而表面张力、界面张力以及相类似的现象就是用来解释分子内聚力的基本物理现象。 具体来说,构成液体的分子在表面上所受的力与本体内的会不相同。在本体内的分子所受的力是对称的、平衡的。而在表面上的分子,受本体内分子吸引而无反向的平衡力。这就是说,它受到的是拉入本体内的力。也就 ...
生物芯片目前是生物学中的一项关键技术。为了开发生物芯片,科学家和工程师借鉴了计算机产业中的小型化技术、集成化技术、并行处理技术,用来开发适用于进行晶片加工的实验室设备和流程。一般来讲,这些微型芯片上的阵列是由有规则排列的cDNA、寡核苷酸、或蛋白质等样本(sample)所组成的。宏阵列排列(macroarraying)也被称作制作栅格(gridding),就是把大型尼龙过滤器上的cDNA、寡核苷酸 ...
通常的生物化学反应过程包括三步,即样品的制备,生化反应、结果的检测和分析。可将这三步不同步骤集成为不同用途的生物芯片,所以据此可将生物芯片分为不同的类型。例如用于样品制备的生物芯片,生化反应生物芯片及各种检测用生物芯片等。现在,已经有不少的研究人员试图将整个生化检测分析过程缩微到芯片上,形成所谓的"芯片实验室"(Lab-on-chip)。"芯片实验室"通过微 ...
生物芯片发展至今有很多名称和类型,通常将样品的制备,生化反应、结果的检测和分析这三步不同步骤集成为不同用途的生物芯片,据此分为不同的类型。例如用于样品制备的生物芯片,生化反应生物芯片及各种检测用生物芯片等。基因芯片技术发展的最终目标是将从样品制备、杂交反应到信号检测的整个生化检测分析过程集成到芯片上以获得微型全分析系统(micro total analytical system)或称所谓的&quo ...
DNA芯片技术是利用核酸杂交原理检测未知分子。它是由核酸片段如一系列用特定荧光标记的寡核苷酸探针,以预先设计排列方式固定在载玻片或尼龙膜上组成生物集成膜片,与不同标记的游离靶分子(DNA 或RNA)杂交,或生物集成膜片上的不同靶分子与游离的探针杂交,然后应用荧光信号检测器及处理器根据杂交分子或未杂交分子所发出的不同波长的光检测杂交信号。如完全杂交则发出强的荧光信号或特殊波长信号,不完全杂交信号较弱 ...
一、在组织培养中污染来源 1. 植物本身具有: (1)植物病原菌 有些作物的病害已被透彻研究,因此在大量繁殖时,可立即检查出来,但有些则否,造成若有污染时,不知来源为何。 (2)和植物有关的菌类 有修植物本身便会和一些菌种共生,或是寄生于植物内部。 2. 植物所带入的污染:内在污染源 许多植物表面或大气中生存的微生物,可经由植物自然的开口或伤口进如植物内部,而有一些兼性腐生菌或 ...

