• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Application of Machine Learning Techniques in Predicting MHC Binders

        互联网

        708
        The machine learning techniques are playing a vital role in the field of immunoinformatics. In the past, a number of methods have been developed for predicting major histocompatibility complex (MHC)-binding peptides using machine learning techniques. These methods allow predicting MHC-binding peptides with high accuracy. In this chapter, we describe two machine learning technique-based methods, nHLAPred and MHC2Pred, developed for predicting MHC binders for class I and class II alleles, respectively. nHLAPred is a web server developed for predicting binders for 67 MHC class I alleles. This sever has two methods: ANNPred and ComPred. ComPred allows predicting binders for 67 MHC class I alleles, using the combined method [artificial neural network (ANN) and quantitative matrix] for 30 alleles and quantitative matrix-based method for 37 alleles. ANNPred allows prediction of binders for only 30 alleles purely based on the ANN. MHC2Pred is a support vector machine (SVM)-based method for prediction of promiscuous binders for 42 MHC class II alleles.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序