RNA‐Seq: A Method for Comprehensive Transcriptome Analysis
互联网
- Abstract
- Table of Contents
- Materials
- Figures
- Literature Cited
Abstract
A recently developed technique called RNA Sequencing (RNA?Seq) uses massively parallel sequencing to allow transcriptome analyses of genomes at a far higher resolution than is available with Sanger sequencing? and microarray?based methods. In the RNA?Seq method, complementary DNAs (cDNAs) generated from the RNA of interest are directly sequenced using next?generation sequencing technologies. The reads obtained from this can then be aligned to a reference genome in order to construct a whole?genome transcriptome map. RNA?Seq has been used successfully to precisely quantify transcript levels, confirm or revise previously annotated 5? and 3? ends of genes, and map exon/intron boundaries. This unit describes protocols for performing RNA?Seq using the Illumina sequencing platform. Curr. Protoc. Mol. Biol. 89:4.11.1?4.11.13. © 2010 by John Wiley & Sons, Inc.
Keywords: RNA?Seq; transcriptome; high?throughput sequencing; gene expression; annotation; cDNA library preparation
Table of Contents
- Introduction
- Basic Protocol 1: cDNA Library Preparation Using Fragmented Double‐Stranded cDNA
- Alternate Protocol 1: cDNA Library Preparation Using Hydrolyzed or Fragmented RNA
- Support Protocol 1: Purification of Fragmented RNA by Ethanol Precipitation
- Support Protocol 2: Purification of cDNA Fragments
- Support Protocol 3: DNA Sequencing and Data Analysis
- Commentary
- Literature Cited
- Figures
Materials
Basic Protocol 1: cDNA Library Preparation Using Fragmented Double‐Stranded cDNA
Materials
Alternate Protocol 1: cDNA Library Preparation Using Hydrolyzed or Fragmented RNA
Support Protocol 1: Purification of Fragmented RNA by Ethanol Precipitation
Materials
Support Protocol 2: Purification of cDNA Fragments
Materials
|
Figures
-
Figure 4.11.1 Flow chart of steps involved in RNA‐Seq method (step numbers refer to ). View Image
Videos
Literature Cited
Literature Cited | |
Bertone, P., Stolc, V., Royce, T.E., Rozowsky, J.S., Urban, A.E., Zhu, X., Rinn, J.L., Tongprasit, W., Samanta, M., Weissman, S., Gerstein, M., and Snyder, M. 2004. Global identification of human transcribed sequences with genome tiling arrays. Science 306:2242‐2246. | |
Cloonan, N., Forrest, A.R., Kolle, G., Gardiner, B.B., Faulkner, G.J., Brown, M.K., Taylor, D.F., Steptoe, A.L., Wani, S., Bethel, G., Roberstson, A.J., Perkins, A.C., Bruce, S.J., Lee, C.C., Ranade, S.S., Peckham, H.E., Manning, J.M., McKernan, K.J., and Grimmond, S.M. 2008. Stem cell transcriptome profiling via massive‐scale mRNA sequencing. Nat. Methods 5:585‐587. | |
David, L., Huber, W., Granovskaia, M., Toedling, J., Palm, C.J., Bofkin, L., Jones, T., Davis, R.W., and Steinmetz, L.M. 2006. A high‐resolution map of transcription in the yeast genome. Proc. Natl. Acad. Sci. U.S.A. 103:5320‐5325. | |
Kent, W.J. 2002. BLAT‐ the BLAST‐Like Alignment Tool. Genome Res. 12:656‐664. | |
LaDeana, W.H., Reinke, V., Green, P., Hirst, M., Marra, M.A., and Waterston, R.H. 2009. Massively parallel sequencing of the polyadenylated transcriptome of C. elegans. Genome Res. 19:657‐666. | |
Li, R., Li, Y., Kristiansen, K., and Wang, J. 2008. SOAP: Short oligonucleotide alignment program. Bioinformatics 24:713‐714. | |
Lister, R., O'Malley, R.C., Tonti‐Filippini, J., Gregory, B.D., Millar, A.H., and Ecker, J.R. 2008. Highly integrated single‐base resolution maps of the epigenome in Arabidopsis. Cell 133:523‐536 | |
Mardis, E. 2008. The impact of next generation sequencing technology on genetics. Trends Genet. 24:133‐141. | |
Marguerat, S., Wilhelm, T., and Bähler, J. 2008. Next‐generation sequencing: Applications beyond genomes. Biochem. Soc. Trans 36:1091‐1096. | |
Marioni, J.C., Mason, C.E., Mane, S.M., Stephens, M., and Gilad, Y. 2008. RNA‐seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Res. 18:1509‐1517. | |
Morin, R., Bainbridge, M., Fejes, A., Hirst, M., Krzywinski, M., Pugh, T., McDonald, H., Varhol, R., Jones, S., and Marra, M. 2008. Profiling the Hela S3 transcriptome using randomly primed cDNA and massively parallel short‐read sequencing. Biotechniques 45:81‐94. | |
Morozova, O. and Marra, M.A. 2008. Applications of next‐generation sequencing technologies in functional genomics. Genomics 92:255‐264. | |
Mortazavi, A., Williams, B.A., McCue, K., Schaeffer, L., and Wold, B. 2008. Mapping and quantifying mammalian transcriptomes by RNA‐Seq. Nat. Methods 5:621‐628. | |
Nagalakshmi, U., Wang, Z., Waern, K., Shou, C., Raha, D., Gerstein, M., and Snyder, M. 2008. The transcriptional landscape of the yeast whole genome defined by RNA sequencing. Science 320:1344‐1349 | |
Shendure, J. 2008. The beginning of the end for microarrays? Nat. Methods 5:585‐587 | |
Sultan, M., Schulz, M.H., Richard, H., Magen, A., Klingenhoff, A., Scherf, M., Seifert, M., Borodina, T., Soldatov, A., Parkhomchuk, D., Schmidt, D., O'Keeffe, S., Haas, S., Vingron, M., Lehrach, H., and Yaspo, M.L. 2008. A global view of gene activity and alternative splicing by deep sequencing of the human genome. Science 321:956‐960. | |
Tsuchihara, K., Suzuki, Y., Wakaguri, H., Irie, T., Tanimoto, K., Hashimoto, S.I., Matsushima, K., Sugano, J.M., Yamashita, R., Nakai, K., Bentley, D., Esumi, H., and Sugano, S. 2009. Massive transcriptional start site analysis of human genes in hypoxia cells. Nucleic Acid Res. 37:2249‐2263 | |
Wang, Z., Gerstein, M., and Snyder, M. 2009. RNA‐Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57‐63. | |
Wilhelm, B.T., Marguerat, S., Watt, S., Schubert, F., Wood, V., Goodhead, I., Penkett, C.J., Rogers, J., and Bahler, J. 2008. Dynamic repertoire of a eukaryotic transcriptome surveyed at single‐nucleotide resolution. Nature 453:1239‐1243. | |
Yamada, K., Lim, J., Dale, J.M., Chen, H., Shinn, P., Palm, C.J., Southwick, A.M., Wu, H.C., Kim, C., Nguyen, M., Pham, P., Cheuk, R., Karlin‐Newmann, G., Liu, S.X., Lam, B., Sakano, H., Wu, T., Yu, G., Miranda, M., Quach, H.L., Tripp, M., Chang, C.H., Lee, J.M., Toriumi, M., Chan, M.M., Tang, C.C., Onodera, C.S., Deng, J.M., Akiyama, K., Ansari, Y., Arakawa, T., Banh, J., Banno, F., Bowser, L., Brooks, S., Carninci, P., Chao, Q., Choy, N., Enju, A., Goldsmith, A.D., Gurjal, M., Hansen, N.F., Hayashizaki, Y., Johnson‐Hopson, C., Hsuan, V.W., Iida, K., Karnes, M., Khan, S., Koesema, E., Ishida, J., Jiang, P.X., Jones, T., Kawai, J., Kamiya, A., Meyers, C., Nakajima, M., Narusaka, M., Seki, M., Sakurai, T., Satou, M., Tamse, R., Vaysberg, M., Wallender, E.K., Wong, C., Yamamura, Y., Yuan, S., Shinozaki, K., Davis, R.W., Theologis, A., and Ecker, J.R. 2003. Empirical analysis of transcriptional activity in the Arabidopsis genome. Science 302:842‐846. |