• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Partitioning in Binary-Transformed Chemical Descriptor Spaces

        互联网

        324
        Here we describe a statistically based partitioning method called median partitioning (MP), which involves the transformation of value distributions of molecular property descriptors into a binary classification scheme. The MP approach fundamentally differs from other partitioning approaches that involve dimension reduction of chemical spaces such as cell-based partitioning, since MP directly operates in original, albeit simplified, chemical space. Modified versions of the MP algorithm have been implemented and successfully applied in diversity selection, compound classification, and virtual screening. These findings have demonstrated that dimension reduction techniques, although elegant in their design, are not necessarily required for effective partitioning of molecular datasets. An attractive feature of statistical partitioning approaches such as decision tree methods or MP is their computational efficiency, which is becoming an important criterion for the analysis of compound databases containing millions of molecules.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序