• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Principal Components Analysis

        互联网

        395
        Principal components analysis (PCA) is a standard tool in multivariate data analysis to reduce the number of dimensions, while retaining as much as possible of the data’s variation. Instead of investigating thousands of original variables, the first few components containing the majority of the data’s variation are explored. The visualization and statistical analysis of these new variables, the principal components, can help to find similarities and differences between samples. Important original variables that are the major contributors to the first few components can be discovered as well.
        This chapter seeks to deliver a conceptual understanding of PCA as well as a mathematical description. We describe how PCA can be used to analyze different datasets, and we include practical code examples. Possible shortcomings of the methodology and ways to overcome these problems are also discussed.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序