• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Protein Identification Using Sorcerer 2 and SEQUEST

        互联网

        1722
        • Abstract
        • Table of Contents
        • Figures
        • Literature Cited

        Abstract

         

        Sage?N's Sorcerer 2 provides an integrated data analysis system for comprehensive protein identification and characterization. It runs on a proprietary version of SEQUESTR , the most widely used search engine for identifying proteins in complex mixtures. The protocol presented here describes the basic steps performed to process mass spectrometric data with Sorcerer 2 and how to analyze results using TPP and Scaffold. The unit also provides an overview of the SEQUESTR algorithm, along with Sorcerer?SEQUESTR enhancements, and a discussion of data filtering methods, important considerations in data interpretation, and additional resources that can be of assistance to users running Sorcerer and interpreting SEQUESTR results. Curr. Protoc. Bioinform. 28:13.3.1?13.3.21. © 2009 by John Wiley & Sons, Inc.

        Keywords: SEQUEST; Sorcerer; Scaffold; Ascore; TPP; proteomics; post?translational modifications; false discovery rate; quantification

             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Table of Contents

        • Basic Protocol 1: Using Sorcerer 2 to Analyze a Complex Mixture of Proteins
        • Guidelines for Understanding Search Results
        • Commentary
        • Literature Cited
        • Figures
             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Materials

         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Figures

        •   Figure 13.3.1 Begin a search: Sorcerer's initial screen.
          View Image
        •   Figure 13.3.2 Sorcerer's Spectra screen, showing the drop‐down list of data formats uploadable in Sorcerer.
          View Image
        •   Figure 13.3.3 Sorcerer's Manage Profiles screen, where a search profile can be set up or modified.
          View Image
        •   Figure 13.3.4 Sorcerer's Database screen, where a database can be modified or a new database defined.
          View Image
        •   Figure 13.3.5 (A ) Customizing enzymes in Sorcerer's Customize screen. (B ) Customizing modifications in Sorcerer's Customize screen.
          View Image
        •   Figure 13.3.6 Viewing jobs and results in Sorcerer's Queue screen.
          View Image
        •   Figure 13.3.7 Selecting the TPP Analysis tab in the Queue screen.
          View Image
        •   Figure 13.3.8 (A ) TPP's PepXML Viewer, providing links to details of peptide‐spectrum matches. (B ) TPP's ProtXML Viewer, provide a ProteinProphet view of protein identifications. (C ) ProteinProphet's Sensitivity/error information, accessible from a link in the ProtXML screen.
          View Image
        •   Figure 13.3.9 (A ) Samples view: an overview of identified proteins. (B ) Similarity view: where protein ambiguities can be explored. (C ) Protein view: providing details of protein identifications. (D ) Quantify view: where different conditions can be compared quantitatively. (E ) Statistics view: exploring the statistical basis of peptide identifications. (F ) Publish view: a template for Methods and supplementary table construction.
          View Image
        •   Figure 13.3.10 Peptide ion fragmentation tables from Scaffold's Protein view are shown, with experimentally matched fragment ions highlighted. The top panel illustrates a high‐probability peptide‐spectrum match, showing long runs of matching ions. The bottom panel illustrates a low‐probability identification, with a low number of scattered matches.
          View Image

        Videos

        Literature Cited

           Aebersold, R. and Goodlett, D.R. 2001. Mass spectrometry in proteomics. Chem. Rev. 101:269‐295.
           Baldwin, M.A. 2004. Protein identification by mass spectrometry: Issues to be considered. Mol. Cell. Proteomics 3:1‐9.
           Beausoleil, S.A., Villén, J., Gerber, S.A., Rush, J. and Gygi, S.P. 2006. A probability‐based approach for high‐throughput protein phosphorylation analysis and site localization. Nat. Biotechnol. 24:1285‐1292.
           Choi, H., Fermin, D., and Nesvizhskii, A.I. 2008. Significance analysis of spectral count data in label‐free shotgun proteomics. Mol. Cell. Proteomics 7:2373‐2385.
           Elias, J.E. and Gygi, S.P. 2007. Target‐decoy search strategy for increased confidence in large‐scale protein identifications by mass spectrometry. Nat. Methods 2007. 4:207‐214.
           Eng, J., McCormack, A.L., and Yates, J.R. 1994. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5:976‐989.
           Han, D.K., Eng, J., Zhou, H., and Aebersold, R. 2001. Quantitative profiling of differentiation‐induced microsomal proteins using isotope‐coded affinity tags and mass spectrometry. Nat. Biotechnol. 19:946‐951.
           Hochstrasser, D.F., Sanchez, J., and Appel, R.D. 2002. Proteomics and its trends facing nature's complexity. Proteomics 2:807‐812.
           Käll, L., Storey, J.D., MacCoss, M.J., and Noble, W.S. 2008a. Assigning significance to peptides identified by tandem mass spectrometry using decoy databases. J. Proteome Res. 7:29‐34.
           Käll, L., Storey, J.D., MacCoss, M.J., and Noble, W.S. 2008b. Posterior error probabilities and false discovery rates: Two sides of the same coin. J. Proteome Res. 7:40‐44.
           Keller, A., Nesvizhskii, A.I., Kolker, E., and Aebersold, E. 2002. Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 74:5383‐5392.
           Mayya, V., Rezaul, K., Cong, Y., and Han, D. 2005. Systematic comparison of a two‐dimensional ion trap and a three‐dimensional ion trap mass spectrometer in proteomics. Mol. Cell Proteomics 4:214‐223.
           Mitchell, P. 2003. In the pursuit of industrial proteomics. Nat. Biotechnol. 21:233‐237.
           Nesvizhskii, A.I., Keller, A., Kolker, E., and Aebersold, R. 2003. A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 75:4646‐4658.
           Pavelka, N.M., Fournier, M.L., Swanson, S.K., Pelizzola, M., Ricciardi‐Castagnoli, P., Florens, L., and Washburn, M.P. 2008. Statistical similarities between transcriptomics and quantitative shotgun proteomics data. Mol. Cell. Proteomics 7:631‐644.
           Peng, J., Elias, J.E., Thoreen, C.C., Licklider, L.F., and Gygi, S.P. 2003. Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC‐MS/MS) for large‐scale protein analysis: The yeast proteome. J. Proteome Res. 2:43‐50.
           Rezaul, K., Linfeng, W., Mayya, V., Hwang, S., and Han, D. 2005. A systematic characterization of mitochondrial proteome from human T leukemia cells. Mol. Cell Proteomics 4:169‐181.
           Washburn, M.P., Wolters, D., and Yates, J.R. 2001. Large‐scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19:242‐247.
           Zhang, B., VerBerkmoes, N.C., Langston, M.A., Uberbacher, E., Hettich, R.L., Samatova, N.F. 2006. Detecting differential and correlated protein expression in label‐free shotgun proteomics. J. Proteome Res. 5:2909‐2918.
        Key References
           Beausoleil et al., . See above
           Description of Ascore algorithm for phosphorylation site localization.
           Eng et al., . See above.
           The original description of the SEQUEST algorithm.
           Käll et al., . See above.
           Good overview of methods associating statistical scores with results of MS/MS experiments.
           Peng et al., . See above.
           Proposes new criteria for decreasing false‐positive results in SEQUEST‐based peptide identification.
           Washburn et al., . See above.
           Widely used criteria for SEQUEST‐based peptide identification.
        Internet Resources
           http://proteomics2.com
           Portal for support information on using Sorcerer and for general information on proteomics.
           http://tools.proteomecenter.org/software.php
           Web site for description and downloads of TPP software tools, including pep and prot XML Viewers.
           http://www.proteomesoftware.com/tutorial/scaffold_users_guide_2‐1.pdf
           Downloadable tutorial on Scaffold.
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library
         
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序