• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        In Silico Knowledge and Content Tracking

        互联网

        398
        This chapter gives a brief overview of text-mining techniques to extract knowledge from large text collections. It describes the basis pipeline of how to come from text to relationships between biological concepts and the problems that are encountered at each step in the pipeline. We first explain how words in text are recognized as concepts. Second, concepts are associated with each other using 2�2 contingency tables and test statistics. Third, we explain that it is possible to extract indirect links between concepts using the direct links taken from 2�2 table analyses. This we call implicit information extraction. Fourth, the validation techniques to evaluate a text-mining system such as ROC curves and retrospective studies are discussed. We conclude by examining how text information can be combined with other non-textual data sources such as microarray expression data and what the future directions are for text-mining within the Internet.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序