• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Support Vector Machines for Classification: A Statistical Portrait

        互联网

        486
        The support vector machine is a supervised learning technique for classification increasingly used in many applications of data mining, engineering, and bioinformatics. This chapter aims to provide an introduction to the method, covering from the basic concept of the optimal separating hyperplane to its nonlinear generalization through kernels. A general framework of kernel methods that encompass the support vector machine as a special case is outlined. In addition, statistical properties that illuminate both advantage and limitation of the method due to its specific mechanism for classification are briefly discussed. For illustration of the method and related practical issues, an application to real data with high-dimensional features is presented.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序