丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Supervised Inference of Gene Regulatory Networks from Positive and Unlabeled Examples

互联网

334
Elucidating the structure of gene regulatory networks (GRN), i.e., identifying which genes are under control of which transcription factors, is an important challenge to gain insight on a cell’s working mechanisms. We present SIRENE, a method to estimate a GRN from a collection of expression data. Contrary to most existing methods for GRN inference, SIRENE requires as input a list of known regulations, in addition to expression data, and implements a supervised machine-learning approach based on learning from positive and unlabeled examples to account for the lack of negative examples.
ad image
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序