丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Genomic Outlier Detection in High-Throughput Data Analysis

互联网

526
In the analysis of high-throughput data, a very common goal is the detection of genes or of differential expression between two groups or classes. A recent finding from the scientific literature in prostate cancer demonstrates that by searching for a different pattern of differential expression, new candidate oncogenes might be found. In this chapter, we discuss the statistical problem, termed oncogene outlier detection, and discuss a variety of proposals to this problem. A statistical model in the multiclass situation is described; links with multiple testing concepts are established. Some new nonparametric procedures are described and compared to existing methods using simulation studies.
ad image
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序