• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Measurement of Arginine Metabolites: Regulators of Nitric Oxide Metabolism

        互联网

        1044
        • Abstract
        • Table of Contents
        • Materials
        • Figures
        • Literature Cited

        Abstract

         

        Arginine is the substrate for nitric oxide synthases (NOS), and arginine availability regulates the production of nitric oxide. Through the activity of methyltransferases, arginine can be methylated to form monomethylarginine (NMMA), asymmetrical dimethylarginine (ADMA), and symmetrical dimethylarginine (SDMA). NMMA and ADMA directly inhibit NOS, whereas SDMA inhibits the cellular import of arginine through the cationic amino acid transporter. Increased levels of methylarginine compounds have been associated with many diseases including atherosclerosis, renal failure, pulmonary hypertension, and preeclampsia. Previous HPLC methods to measure these molecules rely on derivatization with ortho?phthalaldehyde, which is unstable and requires immediate pre? or post?column reactions. We have identified a new fluorometric agent that is stable for at least 1 week and provides chromatographic properties that facilitate separation of these chemically similar compounds by reverse phase chromatography. Curr. Protoc. Toxicol . 58:17.16.1?17.16.9. © 2013 by John Wiley & Sons, Inc.

        Keywords: arginine; ADMA; HPLC; methylarginine

             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Table of Contents

        • Introduction
        • Basic Protocol 1: Measurement of Arginine Metabolites in Plasma
        • Alternate Protocol 1: Measurement of Arginine Metabolites in Other Sample Matrices
        • Reagents and Solutions
        • Commentary
        • Literature Cited
        • Figures
        • Tables
             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Materials

        Basic Protocol 1: Measurement of Arginine Metabolites in Plasma

          Materials
        • Plasma samples, frozen at −80°C
        • Internal standard, e.g., 100 μM L‐homoarginine (Sigma‐Aldrich) in AccQ‐Fluor buffer (Waters)
        • Ethanol, 200 proof, HPLC/spectrophotometric grade (Sigma‐Aldrich)
        • Nitrogen gas
        • AccQ‐Fluor reagent kit (Waters), containing AccQ‐Fluor buffer and AccQ‐Fluor tag (store desiccated at 4ºC)
        • L‐arginine, L‐citrulline, proline, L‐ornithine, ADMA, SDMA, and NMMA
        • 0.1 M HCl (ACS reagent grade; Fisher)
        • Mobile phase A (see recipe )
        • Mobile phase B (see recipe )
        • 1.5‐ml microcentrifuge tubes
        • Vortex
        • Refrigerated centrifuge
        • 0.22‐μm, 47‐mm GSWP filter microfiltration tubes, sterile (Ultrafree, GV Durapore; Millipore)
        • HPLC autosampler injection vials with 200‐μl inserts
        • 3 × 250–mm, 3.5‐μm particle size C18‐SB reverse‐phase column (Zorbax, Agilent)
        • 4.6 × 12–mm, 5‐μm particle size C18‐SB guard column (Zorbax, Agilaent)
        • Column heater (Timberline)
        • HPLC system (Shimadzu), including:
          • System controller SCL‐10AVP
          • Solvent Delivery Module LC‐10ATVP
          • Low‐pressure gradient flow control valve FCV‐10ALVP
          • Degasser unit DGU‐14A
          • Auto injector SIL‐10ADVP
        • Spectrofluorometric detector RF‐10AXL

        Alternate Protocol 1: Measurement of Arginine Metabolites in Other Sample Matrices

          Additional Materials (also see Basic Protocol)
        • ∼200 mg of tissue sample of interest or 200‐μl urine sample, frozen at −80ºC
        • Liquid nitrogen
        • Lysis buffer (see recipe )
        • Phosphate‐buffered saline, pH 7.4 (PBS; see recipe )
        • 50:40:10 (v/v/v) methanol (HPLC grade, Fisher)/water/ammonia (7 N in methanol, Sigma‐Aldrich)
        • Methanol
        • 7 × 95‐mm electric sawtooth homogenizer (e.g., PowerGen, Fisher)
        • 3‐cc (60‐mg) Oasis MCX SPE solid‐phase extraction cation‐exchange columns (Waters)
        • 5‐ml glass centrifuge tubes
        • 60°C heating block
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Figures

        •   Figure Figure 17.16.1 Chromatographic separation of standards using the methods described in this unit.
          View Image
        •   Figure Figure 17.16.2 Chromatographic separation of a plasma sample.
          View Image

        Videos

        Literature Cited

        Literature Cited
           Boger, R.H., Diemert, A., Schwedhelm, E., Luneburg, N., Maas, R., and Hecher, K. 2010. The role of nitric oxide synthase inhibition by asymmetric dimethylarginine in the pathophysiology of preeclampsia. Gynecol. Obstet. Invest. 69:1‐13.
           Chen, X.M., Hu, C.P., Li, Y.J., and Jiang, J.L. 2012. Cardiovascular risk in autoimmune disorders: Role of asymmetric dimethylarginine. Eur. J. Pharmacol. 696:5‐11.
           Cua, C.L., Rogers, L.K., Chicoine, L.G., Augustine, M., Jin, Y., Nash, P.L., and Nelin, L.D. 2011. Down syndrome patients with pulmonary hypertension have elevated plasma levels of asymmetric dimethylarginine. Eur. J. Pediatr. 170:859‐863.
           El‐Shanshory, M., Badraia, I., Donia, A., Abd El‐Hameed, F., and Mabrouk, M. 2013. Asymmetric dimethylarginine levels in children with sickle cell disease and its correlation to tricuspid regurgitant jet velocity. Eur. J. Haematol. 91:55‐61.
           Heresztyn, T., Worthley, M.I., and Horowitz, J.D. 2004. Determination of L‐arginine and NG, NG‐ and NG, NG'‐dimethyl‐L‐arginine in plasma by liquid chromatography as AccQ‐Fluor fluorescent derivatives. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 805:325‐329.
           Kiechl, S., Lee, T., Santer, P., Thompson, G., Tsimikas, S., Egger, G., Holt, D.W., Willeit, J., Xu, Q., and Mayr, M. 2009. Asymmetric and symmetric dimethylarginines are of similar predictive value for cardiovascular risk in the general population. Atherosclerosis 205:261‐265.
           Leiper, J.M., Santa Maria, J., Chubb, A., MacAllister, R.J., Charles, I.G., Whitley, G.S., and Vallance, P. 1999. Identification of two human dimethylarginine dimethylaminohydrolases with distinct tissue distributions and homology with microbial arginine deiminases. Biochem. J. 343:209‐214.
           Richir, M.C., Siroen, M.P., van Elburg, R.M., Fetter, W.P., Quik, F., Nijveldt, R.J., Heij, H.A., Smit, B.J., Teerlink, T., and van Leeuwen, P.A. 2007. Low plasma concentrations of arginine and asymmetric dimethylarginine in premature infants with necrotizing enterocolitis. Br. J. Nutr. 97:906‐911.
           Schwedhelm, E. 2005. Quantification of ADMA: Analytical approaches. Vasc. Med. 10:S89‐S95.
           Schwedhelm, E. and Boger, R.H. 2011. The role of asymmetric and symmetric dimethylarginines in renal disease. Nat. Rev. Nephrol. 7:275‐285.
           Schwedhelm, E., Tan‐Andresen, J., Maas, R., Riederer, U., Schulze, F., and Boger, R.H. 2005. Liquid chromatography‐tandem mass spectrometry method for the analysis of asymmetric dimethylarginine in human plasma. Clin. Chem. 51:1268‐1271.
           Selley, M.L. 2004. Increased (E)‐4‐hydroxy‐2‐nonenal and asymmetric dimethylarginine concentrations and decreased nitric oxide concentrations in the plasma of patients with major depression. J. Affect Disord. 80:249‐256.
           Shao, Z., Wang, Z., Shrestha, K., Thakur, A., Borowski, A.G., Sweet, W., Thomas, J.D., Moravec, C.S., Hazen, S.L., and Tang, W.H. 2012. Pulmonary hypertension associated with advanced systolic heart failure: Dysregulated arginine metabolism and importance of compensatory dimethylarginine dimethylaminohydrolase‐1. J. Am. Coll. Cardiol. 59:1150‐1158.
           Teerlink, T., Luo, Z., Palm, F., and Wilcox, C.S. 2009. Cellular ADMA: Regulation and action. Pharmacol. Res. 60:448‐460.
           Visser, M., Paulus, W.J., Vermeulen, M.A., Richir, M.C., Davids, M., Wisselink, W., de Mol, B.A., and van Leeuwen, P.A. 2010. The role of asymmetric dimethylarginine and arginine in the failing heart and its vasculature. Eur. J. Heart Fail. 12:1274‐1281.
           Wilcken, D.E., Sim, A.S., Wang, J., and Wang, X.L. 2007. Asymmetric dimethylarginine (ADMA) in vascular, renal and hepatic disease and the regulatory role of L‐arginine on its metabolism. Mol. Genet. Metab. 91:309‐317.
           Witte, M.B. and Barbul, A. 2003. Arginine physiology and its implication for wound healing. Wound Repair Regen. 11:419‐423.
           Zakrzewicz, D. and Eickelberg, O. 2009. From arginine methylation to ADMA: A novel mechanism with therapeutic potential in chronic lung diseases. BMC Pulm. Med. 9:5.
           Zhang, W.Z. and Kaye, D.M. 2004. Simultaneous determination of arginine and seven metabolites in plasma by reversed‐phase liquid chromatography with a time‐controlled ortho‐phthaldialdehyde precolumn derivatization. Anal. Biochem. 326:87‐92.
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library
         
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序