• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Prediction of Protein Tertiary Structures Using MUFOLD

        互联网

        474
        There have been steady improvements in protein structure prediction during the past two decades. However, current methods are still far from consistently predicting structural models accurately with computing power accessible to common users. To address this challenge, we developed MUFOLD, a hybrid method of using whole and partial template information along with new computational techniques for protein tertiary structure prediction. MUFOLD covers both template-based and ab initio predictions using the same framework and aims to achieve high accuracy and fast computing. Two major novel contributions of MUFOLD are graph-based model generation and molecular dynamics ranking (MDR). By formulating a prediction as a graph realization problem, we apply an efficient optimization approach of Multidimensional Scaling (MDS) to speed up the prediction dramatically. In addition, under this framework, we enhance the predictions consistently by iteratively using the information from generated models. MDR, in contrast to widely used static scoring functions, exploits dynamics properties of structures to evaluate their qualities, which can often identify best structures from a pool more effectively.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序