• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Application of Support Vector Machine-Based Ranking Strategies to Search for Target-Selective Compounds

        互联网

        578
        Support vector machine (SVM)-based selectivity searching has recently been introduced to identify compounds in virtual screening libraries that are not only active for a target protein, but also selective for this target over a closely related member of the same protein family. In simulated virtual screening calculations, SVM-based strategies termed preference ranking and one-versus-all ranking were successfully applied to rank a database and enrich high-ranking positions with selective compounds while removing nonselective molecules from high ranks. In contrast to the original SVM approach developed for binary classification, these strategies enable learning from more than two classes, considering that distinguishing between selective, promiscuously active, and inactive compounds gives rise to a three-class prediction problem. In this chapter, we describe the extension of the one-versus-all strategy to four training classes. Furthermore, we present an adaptation of the preference ranking strategy that leads to higher recall of selective compounds than previously investigated approaches and is applicable in situations where the removal of nonselective compounds from high-ranking positions is not required.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序