• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Mining SNPs from DNA Sequence Data; Computational Approaches to SNP Discovery and Analysis

        互联网

        514
        Single nucleotide polymorphisms (SNPs) are the most abundant form of genetic variation and are the basis for most molecular markers. Before these SNPs can be used for direct sequence-based SNP detection or in a derived SNP assay, they need to be identified. For those regions or species where no validated SNPs are available in the public databases, a good alternative is to mine them from DNA sequences. The alignment of multiple sequence fragments originating from different genotypes representing the same region on the genome will allow for the discovery of sequence variants. The corresponding nucleotide mismatches are likely to be SNPs or insertions/deletions. A large amount of sequence data to be mined is present in the public databases (both expressed sequence tags and genomic sequences) and is free to use without having to do large-scale sequencing oneself. However, with the appearance of the next-generation sequencing machines (Roche GS/454, Illumina GA/Solexa, SOLiD), high-throughput sequencing is becoming widely available. This will allow for the sequencing of polymorphic genotypes on specific target areas and consequent SNP identification. In this paper we discuss the bioinformatics tools required to analyze DNA sequence data for SNP mining. A general approach for the consecutive steps in the mining process is described and commonly used SNP discovery pipelines are presented.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序