• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Connecting Protein Interaction Data, Mutations, and Disease Using Bioinformatics

        互联网

        366
        Understanding how mutations lead to changes in protein function and/or protein interaction is critical to understanding the molecular causes of clinical phenotypes. In this method, we present a path toward integration of protein interaction data and mutation data and then demonstrate the identification of a subset of proteins and interactions that are important to a particular disease. We then build a statistical model of disease mutations in this disease-associated subset of proteins, and visualize these results. Using Alzheimer’s disease (AD) as case implementation, we find that we are able to identify a subset of proteins involved in AD and discriminate disease-associated mutations from SNPs in these proteins with 83% accuracy. As the molecular causes of disease become more understood, models such as these will be useful for identifying candidate variants most likely to be causative.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序