• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        化学生物学

        互联网

        1529

        化学生物学 是自90年代中期以来的新兴研究领域. 哈佛大学的Schreiber 博士和Scripps研究所的Schultz 博士分别在东西海岸引领这个领域, 他们的所在地所形成的重心地位甚至在加强. 从源头来讲, 化学是研究分子的科学, 生物化学, 分子生物学, 还有生物学化学都是一样的. 但是由于科学家们长期以来的习惯称谓, 我们通常使用生物化学指蛋白质结构和活性的研究, 用分子生物学指基因表达和控制的研究, 用生物学化学指分子水平上的生物现象的研究. (如有错误或阁下有不同观点请不吝赐教)



        Schreiber from East Schultz from West

        与这些相比, 化学生物学使用小分子作为工具解决生物学的问题或通过干扰/调节正常过程了解蛋白质的功能.在某种意义上, 使用小分子调节目标蛋白质与制药公司发展新药类似. 但是, 当所有公司的目标蛋白质到目前为止仅是约450种的时候, 人类基因组计划为我们带来了至少几万个目标蛋白质. 最终的目标是寻找特异性调节素或寻找解开所有蛋白质之谜的钥匙, 但这需要更系统和整体的方法而并非传统方法. 化学生物学看起来是有希望的答案. 系统的化学生物学仅仅诞生于90年代中期, 部份是由于基础条件到那时才刚刚完备. 代表性的技术进步包括机器人工程, 高通量及高灵敏度的生物筛选, 信息生物学, 数据采集工具, 组合化学和芯片技术例如DNA芯片. 化学生物学更普遍的被叫做化学遗传学(chemical genetics) , 而且它正在扩展到化学基因组学. 和经典遗传学相比较, 小分子并不是取代或超越基因表达, 而是被用于抑制或活化翻译过程.


        Knockout à protein synthesis suppression vs molecular suppressor à protein activity suppression
        Overexpression à protein synthesis activation vs molecular activator à protein activation

        正如经典遗传研究方法一样, 化学遗传学中的正向法和逆向法都是可行的.

         

        <center> <p>  </p> <p>  </p> </center>
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序