相关产品推荐更多 >
万千商家帮你免费找货
0 人在求购买到急需产品
- 详细信息
- 文献和实验
- 技术资料
- 规格:
T25
HCC1806/HCC1806细胞系/HCC1806细胞株/HCC1806人乳腺鳞状癌细胞
Cell line name HCC1806
Synonyms Hcc1806; HCC-1806; Hamon Cancer Center 1806
Accession CVCL_1258
Resource Identification Initiative To cite this cell line use: HCC1806 (RRID:CVCL_1258)
Comments Group: Triple negative breast cancer (TNBC) cell line.
Part of: Cancer Dependency Map project (DepMap) (includes Cancer Cell Line Encyclopedia - CCLE).
Part of: COSMIC cell lines project.
Part of: JWGray breast cancer cell line panel.
Part of: ICBP43 breast cancer cell line panel.
Part of: KuDOS 95 cell line panel.
Part of: MD Anderson Cell Lines Project.
Population: African American.
Doubling time: 36.66 hours (JWGray panel).
Microsatellite instability: Stable (MSS) (Sanger).
Omics: Array-based CGH.
Omics: CNV analysis.
Omics: CRISPR phenotypic screen.
Omics: Deep exome analysis.
Omics: Deep quantitative proteome analysis.
Omics: DNA methylation analysis.
Omics: CTCF ChIP-seq epigenome analysis.
Omics: H2A.Z ChIP-seq epigenome analysis.
Omics: H3K27ac ChIP-seq epigenome analysis.
Omics: H3K27me3 ChIP-seq epigenome analysis.
Omics: H3K4me1 ChIP-seq epigenome analysis.
Omics: H3K4me2 ChIP-seq epigenome analysis.
Omics: H3K4me3 ChIP-seq epigenome analysis.
Omics: H3K9ac ChIP-seq epigenome analysis.
Omics: H4K20me1 ChIP-seq epigenome analysis.
Omics: Pol2 ChIP-seq epigenome analysis.
Omics: miRNA expression profiling.
Omics: Protein expression by reverse-phase protein arrays.
Omics: SNP array analysis.
Omics: Transcriptome analysis by microarray.
Omics: Transcriptome analysis by RNAseq.
Derived from site: In situ; Breast; UBERON=UBERON_0000310.
PubMed=9833771; DOI=10.1002/(SICI)1097-0215(19981209)78:6<766::AID-IJC15>3.0.CO;2-L
Gazdar A.F., Kurvari V., Virmani A.K., Gollahon L.S., Sakaguchi M., Westerfield M., Kodagoda D.R., Stasny V., Cunningham H.T., Wistuba I.I., Tomlinson G.E., Tonk V., Ashfaq R., Leitch A.M., Minna J.D., Shay J.W.
Characterization of paired tumor and non-tumor cell lines established from patients with breast cancer.
Int. J. Cancer 78:766-774(1998)
PubMed=9865903
Wistuba I.I., Behrens C., Milchgrub S., Syed S., Ahmadian M., Virmani A.K., Kurvari V., Cunningham T.H., Ashfaq R., Minna J.D., Gazdar A.F.
Comparison of features of human breast cancer cell lines and their corresponding tumors.
Clin. Cancer Res. 4:2931-2938(1998)
PubMed=11314036; DOI=10.1038/sj.onc.1204211
Forgacs E., Wren J.D., Kamibayashi C., Kondo M., Xu X.L., Markowitz S.D., Tomlinson G.E., Muller C.Y., Gazdar A.F., Garner H.R., Minna J.D.
Searching for microsatellite mutations in coding regions in lung, breast, ovarian and colorectal cancers.
Oncogene 20:1005-1009(2001)
PubMed=12353263; DOI=10.1002/gcc.10107
Popovici C., Basset C., Bertucci F., Orsetti B., Adelaide J., Mozziconacci M.-J., Conte N., Murati A., Ginestier C., Charafe-Jauffret E., Ethier S.P., Lafage-Pochitaloff M., Theillet C., Birnbaum D., Chaffanet M.
Reciprocal translocations in breast tumor cell lines: cloning of a t(3;20) that targets the FHIT gene.
Genes Chromosomes Cancer 35:204-218(2002)
PubMed=12800145; DOI=10.1002/gcc.10218
Adelaide J., Huang H.-E., Murati A., Alsop A.E., Orsetti B., Mozziconacci M.-J., Popovici C., Ginestier C., Letessier A., Basset C., Courtay-Cahen C., Jacquemier J., Theillet C., Birnbaum D., Edwards P.A.W., Chaffanet M.
A recurrent chromosome translocation breakpoint in breast and pancreatic cancer cell lines targets the neuregulin/NRG1 gene.
Genes Chromosomes Cancer 37:333-345(2003)
PubMed=19582160; DOI=10.1371/journal.pone.0006146; PMCID=PMC2702084
Kao J., Salari K., Bocanegra M., Choi Y.-L., Girard L., Gandhi J., Kwei K.A., Hernandez-Boussard T., Wang P., Gazdar A.F., Minna J.D., Pollack J.R.
Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery.
PLoS ONE 4:E6146-E6146(2009)
PubMed=20070913; DOI=10.1186/1471-2407-10-15; PMCID=PMC2836299
Tsuji K., Kawauchi S., Saito S., Furuya T., Ikemoto K., Nakao M., Yamamoto S., Oka M., Hirano T., Sasaki K.
Breast cancer cell lines carry cell line-specific genomic alterations that are distinct from aberrations in breast cancer tissues: comparison of the CGH profiles between cancer cell lines and primary cancer tissues.
BMC Cancer 10:15.1-15.10(2010)
PubMed=20164919; DOI=10.1038/nature08768; PMCID=PMC3145113
Bignell G.R., Greenman C.D., Davies H.R., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B.-Y., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.
Signatures of mutation and selection in the cancer genome.
Nature 463:893-898(2010)
PubMed=20679594; DOI=10.1093/jnci/djq279; PMCID=PMC2935474
Gazdar A.F., Girard L., Lockwood W.W., Lam W.L., Minna J.D.
Lung cancer cell lines as tools for biomedical discovery and research.
J. Natl. Cancer Inst. 102:1310-1321(2010)
PubMed=21778573; DOI=10.3233/BD-2010-0307; PMCID=PMC3532890
Chavez K.J., Garimella S.V., Lipkowitz S.
Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer.
Breast Dis. 32:35-48(2010)
PubMed=21603256; DOI=10.4137/BCBCR.S7087; PMCID=PMC3091405
Neves L.A.H., Ingram L.M., Davis M.B.
The characterization of cell line CRL-2335 as a basal-like breast carcinoma model.
Breast Cancer (Auckl.) 5:67-72(2011)
PubMed=22460905; DOI=10.1038/nature11003; PMCID=PMC3320027
Barretina J.G., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehar J., Kryukov G.V., Sonkin D., Reddy A., Liu M., Murray L., Berger M.F., Monahan J.E., Morais P., Meltzer J., Korejwa A., Jane-Valbuena J., Mapa F.A., Thibault J., Bric-Furlong E., Raman P., Shipway A., Engels I.H., Cheng J., Yu G.-Y.K., Yu J.-J., Aspesi P. Jr., de Silva M., Jagtap K., Jones M.D., Wang L., Hatton C., Palescandolo E., Gupta S., Mahan S., Sougnez C., Onofrio R.C., Liefeld T., MacConaill L.E., Winckler W., Reich M., Li N.-X., Mesirov J.P., Gabriel S.B., Getz G., Ardlie K., Chan V., Myer V.E., Weber B.L., Porter J., Warmuth M., Finan P., Harris J.L., Meyerson M.L., Golub T.R., Morrissey M.P., Sellers W.R., Schlegel R., Garraway L.A.
The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Nature 483:603-607(2012)
风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。
文献和实验*发表【中文论文】请标注:由上海酶研生物科技有限公司提供;
*发表【英文论文】请标注:From Shanghai EK-Bioscience Biotechnology Co., Ltd.
基于阻抗的rtca细胞分析技术应用--Transwell侵袭实验
(MCF-7和HCC1806) 转移疗效的。 研究者通过比较划痕处理后细胞迁移的趋势和速度,发现Maestro Z系统能够轻松地将两种肿瘤细胞系的差别区分开来。HCC1806细胞相对于MCF-7而言有更强的迁移能力, 这点能够和临床上观察到的三阴乳腺癌肿瘤细胞的高转移能力相呼应。此外,她们还发现MaestroZ系统对于不同抗转移MCP在作用效应和动态上的微小差别很敏感,证实了它在评估抗转移治疗疗效方面的价值。若要了解更多,可参考:(page_2 - (axionbio.cn))
学问题。 案例一:多组学分析揭示肝癌起始细胞免疫逃逸机制和精准治疗策略 发表期刊:Cancer Cell 影响因子:44.5 发表时间:2024 年 12 月 研究疾病:肝细胞癌(Hepatocellular Carcinoma,HCC) 样本类型:患者来源的肝癌类器官(HCC organoids),肝癌细胞系(Hep3B,Huh7,PLC/PRF/5, MHCC97 H,Hep53.4)和小鼠模型(包括自发性肝癌模型和异种移植模型) 样本数量:11 个 HCC 类器官样本,4 个肝癌细胞系样本
文献速递:全面液体分析循环肿瘤DNA和蛋白质生物标志物为评估预后带来新的可能
研究背景 肝细胞癌(HCC)被认为是中国癌症相关死亡率的第三大原因。尽管手术是治疗HCC的较佳选择,但由于缺乏早期症状,大多数患者在癌症晚期才被诊断出来,因此肿瘤复发的风险很高。识别可能复发的患者并给予对应的辅助治疗,仍然是一个临床难题。循环肿瘤DNA(ctDNA),也可称为肿瘤衍生的细胞游离DNA,包含有关肿瘤基因组图谱的全面信息,包括单核苷酸变异(SNVs)、拷贝数变异(CNVs)和表观遗传变异。将ctDNA与HCC中的传统血清蛋白生物标志物结合将为无创监测实时肿瘤进展提供新的可能。
技术资料







