产品封面图
文献支持

DMS114/DMS114/DMS114/小细胞肺癌细胞

收藏
  • ¥1980
  • EK-Bioscience已认证
  • 国内
  • MY-K5633
  • 2025年07月25日
    avatar
    品牌商
    12钻石会员
  • 企业认证

    点击 QQ 联系

  • 万千商家帮你免费找货

    0 人在求购买到急需产品
    • 详细信息
    • 文献和实验
    • 技术资料
    • 英文名

      DMS114

    • 库存

      1x10^6/瓶/支

    • 供应商

      上海酶研

    • 肿瘤类型

      详询

    • 细胞类型

      小细胞肺癌细胞

    • ATCC Number

      详询

    • 品系

      DMS114

    • 组织来源

      小细胞肺癌细胞

    • 相关疾病

      DMS114

    • 物种来源

      哺乳动物

    • 免疫类型

      详询

    • 细胞形态

      贴壁/悬浮

    • 是否是肿瘤细胞

      详询

    • 器官来源

      小细胞肺癌细胞

    • 运输方式

      顺丰快递

    • 年限

      5年

    • 生长状态

      生长良好

    DMS114/DMS114细胞系/DMS114细胞株/DMS114小细胞肺癌细胞

    Cell line name DMS 114

    Synonyms DMS-114; DMS114; Darmouth Medical School 114

    Accession CVCL_1174

    Resource Identification Initiative To cite this cell line use: DMS 114 (RRID:CVCL_1174)

    Comments Part of: Cancer Dependency Map project (DepMap) (includes Cancer Cell Line Encyclopedia - CCLE).

    Part of: COSMIC cell lines project.

    Part of: FGFR genetic alteration cell panel (ATCC TCP-1034).

    Part of: JFCR39 cancer cell line panel.

    Part of: KuDOS 95 cell line panel.

    Population: Caucasian.

    Doubling time: 3.8 days (PubMed=6266631); 1.6 days (PubMed=2986244); 27 hours (PubMed=7718330).

    Microsatellite instability: Stable (MSS) (Sanger).

    Omics: Deep exome analysis.

    Omics: Deep proteome analysis.

    Omics: Deep quantitative proteome analysis.

    Omics: DNA methylation analysis.

    Omics: Protein expression by reverse-phase protein arrays.

    Omics: SNP array analysis.

    Omics: Transcriptome analysis by microarray.

    Omics: Transcriptome analysis by RNAseq.

    Caution: Originally classified as originating from a lung small cell carcinoma, but is reclassified as a thoracic SMARCA4-deficient undifferentiated tumor based on a number of criteria (PubMed=38180245).

    Derived from site: In situ; Lung; UBERON=UBERON_0002048.

    PubMed=7718330; DOI=10.1016/0959-8049(94)00472-H

    Baguley B.C., Marshall E.S., Whittaker J.R., Dotchin M.C., Nixon J., McCrystal M.R., Finlay G.J., Matthews J.H.L., Holdaway K.M., van Zijl P.L.

    Resistance mechanisms determining the in vitro sensitivity to paclitaxel of tumour cells cultured from patients with ovarian cancer.

    Eur. J. Cancer 31A:230-237(1995)

     

    PubMed=9212023; DOI=10.1016/S0360-3016(97)00245-9

    Krarup M., Poulsen H.S., Spang-Thomsen M.

    Cellular radiosensitivity of small-cell lung cancer cell lines.

    Int. J. Radiat. Oncol. Biol. Phys. 38:191-196(1997)

     

    PubMed=9744504; DOI=10.1038/bjc.1998.553; PMCID=PMC2063065

    Damstrup L., Voldborg B.G.R., Spang-Thomsen M., Brunner N., Poulsen H.S.

    In vitro invasion of small-cell lung cancer cell lines correlates with expression of epidermal growth factor receptor.

    Br. J. Cancer 78:631-640(1998)

     

    PubMed=12712436; DOI=10.1002/ijc.11106

    Hansen L.T., Lundin C., Spang-Thomsen M., Petersen L.N., Helleday T.

    The role of RAD51 in etoposide (VP16) resistance in small cell lung cancer.

    Int. J. Cancer 105:472-479(2003)

     

    PubMed=15900046; DOI=10.1093/jnci/dji133

    Mashima T., Oh-hara T., Sato S., Mochizuki M., Sugimoto Y., Yamazaki K., Hamada J.-i., Tada M., Moriuchi T., Ishikawa Y., Kato Y., Tomoda H., Yamori T., Tsuruo T.

    p53-defective tumors with a functional apoptosome-mediated pathway: a new therapeutic target.

    J. Natl. Cancer Inst. 97:765-777(2005)

     

    PubMed=20164919; DOI=10.1038/nature08768; PMCID=PMC3145113

    Bignell G.R., Greenman C.D., Davies H.R., Butler A.P., Edkins S., Andrews J.M., Buck G., Chen L., Beare D., Latimer C., Widaa S., Hinton J., Fahey C., Fu B.-Y., Swamy S., Dalgliesh G.L., Teh B.T., Deloukas P., Yang F.-T., Campbell P.J., Futreal P.A., Stratton M.R.

    Signatures of mutation and selection in the cancer genome.

    Nature 463:893-898(2010)

     

    PubMed=20215515; DOI=10.1158/0008-5472.CAN-09-3458; PMCID=PMC2881662

    Rothenberg S.M., Mohapatra G., Rivera M.N., Winokur D., Greninger P., Nitta M., Sadow P.M., Sooriyakumar G., Brannigan B.W., Ulman M.J., Perera R.M., Wang R., Tam A., Ma X.-J., Erlander M., Sgroi D.C., Rocco J.W., Lingen M.W., Cohen E.E.W., Louis D.N., Settleman J., Haber D.A.

    A genome-wide screen for microdeletions reveals disruption of polarity complex genes in diverse human cancers.

    Cancer Res. 70:2158-2164(2010)

     

    PubMed=22336246; DOI=10.1016/j.bmc.2012.01.017

    Kong D.-X., Yamori T.

    JFCR39, a panel of 39 human cancer cell lines, and its application in the discovery and development of anticancer drugs.

    Bioorg. Med. Chem. 20:1947-1951(2012)

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    图标文献和实验
    该产品被引用文献

    *发表【中文论文】请标注:由上海酶研生物科技有限公司提供;

    *发表【英文论文】请标注:From Shanghai EK-Bioscience Biotechnology Co., Ltd.

    相关实验
    • Nature!中美学者共同破译粘附类 GPCR 自激活机制之谜

      activation of adhesion GPCRs 工作中,研究者们回答了这一未解谜题。 孙金鹏教授团队解析了粘附类受体 GPR133 和 GPR114 结构,发现 GPR133 GPS 位点发生水解,在质膜上发生 NTF-CTF 分离,GPR114 不发生自水解,能够感知机械力。通过功能实验证明了受体感知机械力后通过 Stachel 序列激活受体,并确定 Stachel 中的 5 个疏水氨基酸组成的保守 HIM(Fss-03xφφφxφss-09),其在 Stachel 序列与受体相互作用中起着核心

    • 同日 4 篇 Nature!中美学者共同破译粘附类 GPCR 自激活机制之谜

      力,刺激驱动着细胞的动态以及机体的正常生长运行。Stachel 序列介导的 aGPCR 激活作用一直是 aGPCR 信号和功能的核心内容,Stachel 序列如何与受体作用,调控受体激活状态的通用机制仍未明晰。在 Structural basis for the tethered peptide activation of adhesion GPCRs 工作中,研究者们回答了这一未解谜题。 孙金鹏教授团队解析了粘附类受体 GPR133 和 GPR114 结构,发现 GPR133 GPS 位点发生

    • Pierce推出更快更彻底的新品去垢剂

      Triton X-114,2% 95 100 NP-40,1% 95 91 Brij*-35,1% 99 97

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    询价
    ATCC细胞库
    2026年01月09日询价
    ¥1620
    博辉生物科技(广州)有限公司
    2025年11月20日询价
    ¥1980
    上海酶研生物科技有限公司
    2026年01月08日询价
    ¥680
    上海联迈生物工程有限公司
    2025年11月13日询价
    ¥500
    北京百奥创新科技有限公司
    2025年07月11日询价
    文献支持
    DMS114/DMS114/DMS114/小细胞肺癌细胞
    ¥1980