[1] Zhang, Y., Huang, M., Zhang, S., Liu, T., Ye, S., Cheng, Y., Cao, Y., Chen, L., Zhu, L., Sun, X., Shen, K., Xu, Q., Li, T., Li, D., Huang, L., Mu, W., Zhao, L., & Wang, J. (2025). Improving CAR-T cell function through a targeted cytokine delivery system utilizing car target-modified extracellular vesicles. Experimental Hematology & Oncology, 14(1), 110.
[2] Wang, S., Li, M., Shen, H., Zhou, W., Sun, J., Tang, Q., Liu, H., Zhang, W., Shen, Z., & Chen, W. (2025). CTLA-4 nanovesicles disrupt dendritic cell-driven CD8 T cell priming for myocardial infarction therapy. Journal of Controlled Release.
[3] Niu, X., Tang, Y., Zhang, G., Zhang, P., Dai, L., Peng, X., & Wan, X. (2025). Flagellin engineering enhances CAR-T cell function by reshaping tumor microenvironment in solid tumors. Journal for ImmunoTherapy of Cancer, 13, e010237.
[4] Cheng, Y., Li, Q., Kong, Y., Huang, A., Yang, Z., Ying, T., & Wu, Y. (2025). An IL-15-modified NKp30×HER2 trispecific NK cell engager enhances NK cell activation and tumor cell killing. Journal of Leukocyte Biology, 117(8), qiaf107.
[5] Cheng, B., Li, M., Zheng, J., Liang, J., Li, Y., Liang, R., Tian, H., Zhou, Z., Ding, L., Ren, J., Shi, W., Zhou, W., Hu, H., Meng, L., Liu, K., Cai, L., Shao, X., Fang, L., & Li, H. (2025). Chemically engineered antibodies for autophagy-based receptor degradation. Nature Chemical Biology, 21(6), 855–866.
[6] Yuan, Y., Wei, Y., Jia, Z., Chu, H., Kong, D., Lei, F., Ye, F., Qian, X., Zhang, J., Zhou, X., Zhu, X., Li, Z., Liang, X., & Chen, W. (2025). Discovery of KBD4466, a selective TLR 7/8 inhibitor, for the treatment of autoimmune diseases. Journal of Medicinal Chemistry.
[7] Liu, J., Liu, W., Hu, Z., Xing, Z., Sun, G. W., Wang, M., Zhang, S. C., & Zhang, X. R. (2025). Apoferritin Nanoparticle-Based Mass Tags: A Novel Metal Tagging Strategy for Mass Cytometry. Analytical Chemistry.
[8] Lin, H. L., Ye, S. W., Zhang, S. J., Ge, T., Li, D. J., Huang, L., Zhu, L., & Mu, W. (2024). Optimizing the procedure for manufacturing clinical-grade genetically manipulated natural killer cells for adoptive immunotherapy. Cytotherapy.
[9] Lin, H., Zhang, L., Ge, T., An, N., Yang, Y., Zhang, Y., & Mu, W. (2025). Engineering CD5-targeting CAR-NK cells from peripheral blood for the treatment of CD5-positive hematological malignancies. Journal of Translational Medicine, 23(1), 409.
[10] Liu, W., Hu, Z., Jiang, W., Liu, J., Sun, G., Zhang, S., & Zhang, X. (2025). Nucleotide-based elemental mass probes for high-sensitive single-cell mass cytometry. Analytical Chemistry, 97(15), 6234–6242.
[11] Li, Z., Song, P., Liu, Y., Sun, X., Zhai, X., & Rao, Y. (2025). Developing potent anti-inflammatory IRAK4-targeting PROTACs with simplified CRBN ligands. Journal of Medicinal Chemistry, 68(5), 3456–3468.
[12] Tang, Q., Li, M., Wang, S., Li, J., Cao, S., Liu, H., Wu, Y., Chen, Y., Shen, H., Zhang, W., Shen, Z., & Chen, W. (2024). Room-temperature-stable immunosuppressive nanovesicles for mitigating immunopathology and streamlining cardioprotection post-infarction. Chemical Engineering Journal.
[13] Shen, Y., Jin, S.-J., Chen, Y.-C., Liu, W.-H., Li, Y.-M., Zhao, W.-Y., Xu, Y.-C., Chen, S.-Q., & Zhao, W.-B. (2023). Improving the tumor selectivity of T cell engagers by logic-gated dual tumor-targeting. Pharmacological Research, 192, 106781.
[14] Wu, S., Luo, Q., Li, F., Zhang, S., Zhang, C., Liu, J., Shao, B., Hong, Y., Tan, T., Dong, X., & Chen, B. (2024). Development of novel humanized CD19/BAFFR bicistronic chimeric antigen receptor T cells with potent antitumor activity against B-cell lineage neoplasms. British Journal of Haematology.
[15] Liu, S., Miersch, S., Li, P., Bai, B., Liu, C., Qin, W., Su, J., Huang, H., Pan, J., Sidhu, S. S., & Wu, D. (2020). A synthetic human antibody antagonizes IL-18Rβ signaling through an allosteric mechanism. Journal of Molecular Biology, 432(8), 2512-2523.
[16] Cheng, J., Ge, T., Zhu, X., Wang, J., Zeng, Y., Mu, W., Cai, H., Dai, Z., Jin, J., Yang, Y., Hu, G., Mao, X., Zhou, J., Zhu, L., & Huang, L. (2023). Preclinical development and evaluation of nanobody-based CD70-specific CAR T cells for the treatment of acute myeloid leukemia. Cancer Immunology, Immunotherapy, 72(5), 1123-1137.
[17] Cheng, J., Zhao, Y., Hu, H., Tang, L., Zeng, Y., Deng, X., Ding, S., Guo, A.-Y., Li, Q., & Zhu, X. (2023). Revealing the impact of CD70 expression on the manufacture and functions of CAR-70 T-cells based on single-cell transcriptomics. Cancer Immunology, Immunotherapy.
[18] Amissah, O. B., Chen, W., Habimana, J. D., Sun, Y., Lin, L., Liu, Y., Wang, L., Liu, Z., Mukama, O., Basnet, R., Liu, H., Li, J., Ding, X., Lv, L., Chen, M., Liang, Y., Huang, R., & Li, Z. (2024). NY-ESO-1-specific T cell receptor-engineered T cells and Tranilast, a TRPV2 antagonist bivalent treatment enhances the killing of esophageal cancer: a dual-targeted cancer therapeutic route. Cancer Cell International, 24(1), 64.
[19] Chen, C., Cui, H., Liu, H., Wu, Y., Ding, N., Weng, Y., Zhang, W., & Cui, Y. (2022). Role of epidermal growth factor receptor-specific CAR-T cells in the suppression of esophageal squamous cell carcinoma. Cancers, 14(24), 6021.