• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Higher Order Interactions: Detection of Epistasis Using Machine Learning and Evolutionary Computation

        互联网

        481
        Higher order interactions are known to affect many different phenotypic traits. The advent of large-scale genotyping has, however, shown that finding interactions is not a trivial task. Classical genome-wide association studies (GWAS) are a useful starting point for unraveling the genetic architecture of a phenotypic trait. However, to move beyond the additive model we need new analysis tools specifically developed to deal with high-dimensional genotypic data. Here we show that evolutionary algorithms are a useful tool in high-dimensional analyses designed to identify gene–gene interactions in current large-scale genotypic data.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序