• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Synthesis of a 2‐Selenothymidine Phosphoramidite and Its Incorporation into Oligodeoxyribonucleotides

        互联网

        1881
        • Abstract
        • Table of Contents
        • Materials
        • Figures
        • Literature Cited

        Abstract

         

        The detailed synthetic protocol for a 2?selenothymidine phosphoramidite and its use in preparing Se?derivatized oligonucleotides are described here. The Se?modified phosphoramidite synthesis was achieved by activating a 2?thiothymidine derivative, followed by introduction of selenium functionality. The coupling reaction yield of the 2?selenothymidine phosphoramidite during solid?phase synthesis is high (>95%), and the oligonucleotides containing the 2?selenothymidine derivatization are stable. Curr. Protoc. Nucleic Acid Chem. 42:1.23.1?1.23.13. © 2010 by John Wiley & Sons, Inc.

        Keywords: nucleic acid; selenium; derivatization; base pairing; X?ray crystallography

             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Table of Contents

        • Introduction
        • Basic Protocol 1: Preparation of the 2‐Selenothymidine Phosphoramidite
        • Support Protocol 1: Synthesis of Iodopropionitrile
        • Basic Protocol 2: Synthesis, Purification, and Characterization of Oligonucleotides Containing 2‐Selenothymidine
        • Commentary
        • Literature Cited
        • Figures
        • Tables
             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Materials

        Basic Protocol 1: Preparation of the 2‐Selenothymidine Phosphoramidite

          Materials
        • 4,4′‐Dimethoxytrityl chloride
        • 2‐Thiothymidine ( S.1 ; ChemGenes, 99.5% pure)
        • 4‐Dimethylaminopyridine (DMAP, Aldrich, purity >99%)
        • Pyridine (Aldrich, anhydrous, purity >99%)
        • Argon
        • Ethyl acetate (EtOAc)
        • Methylene chloride (dichloromethane, CH 2 Cl 2 ; Fluka, purity >99.5%)
        • Methanol (MeOH)
        • MgSO 4 (anhydrous)
        • Silica gel (porosity, 60 Å; particle size, 40 to 63 µm; 230 × 400 mesh)
        • N , N ‐Dimethylformamide (DMF; Aldrich, anhydrous, 99% pure)
        • Iodomethane (CH 3 I; Aldrich, 99% pure)
        • 1,8‐Diazabicyclo[5.4.0]undec‐7‐ene (DBU; Aldrich, 98% pure)
        • Chloroform (CHCl 3 )
        • Selenium (Se; Fluka, 95% pure)
        • Sodium borohydride (NaBH 4 ; Aldrich, 98% pure)
        • Ethanol (absolute)
        • NaCl, aqueous, saturated
        • Iodopropionitrile (ICH 2 CH 2 CN; protocol 2 )
        • N,N ‐Diisopropylethylamine (DIPEA; Aldrich, 99% pure)
        • 2‐Cyanoethyl N ,N ‐diisopropylchlorophosphoramidite (ChemGenes Corporation)
        • Pentane
        • 25‐, 50‐, and 100‐mL round‐bottom flasks
        • Vacuum oil pump
        • 1‐ and 5‐mL syringes
        • Rubber septum
        • Rotary evaporator
        • Separatory funnels
        • 22 × 457–mm silica gel chromatography columns
        • Stir bar
        • 100‐mL beakers
        • Additional reagents and equipment for performing thin‐layer chromatography ( appendix 3D ) and column chromatography ( appendix 3E )

        Support Protocol 1: Synthesis of Iodopropionitrile

          Materials
        • Potassium iodide (Aldrich, 95%)
        • Acetone
        • Argon
        • 3‐Bromopropionitrile (Aldrich, 99%)
        • Ethyl acetate (EtOAc)
        • MgSO 4 , anhydrous
        • 100‐mL round‐bottom flasks
        • Stir bar
        • Condenser
        • Heating plate
        • Separatory funnel
        • Rotary evaporator

        Basic Protocol 2: Synthesis, Purification, and Characterization of Oligonucleotides Containing 2‐Selenothymidine

          Materials
        • 2‐Selenothymidine phosphoramidite ( S.6 ; protocol 1 )
        • Acetonitrile (CH 3 CN), anhydrous
        • Ultra‐mild phosphoramidites: Pac‐dA‐CE, iPr‐Pac‐dG‐CE, Ac‐dC‐CE, dT‐CE (Glen Research; abbreviations: Ac, acetyl; CE, cyanoethyl; iPr, isopropyl; Pac, phenoxyacetyl)
        • 50 M K 2 CO 3 in methanol
        • 2 M triethylammonium acetate (TEAA) buffer, pH 7.0
        • Acetonitrile (CH 3 CN), HPLC grade
        • 30% (v/v) trichloroacetic acid (TCA), aqueous
        • Argon
        • 3‐Hydroxypicolinic acid (3‐HPA)
        • Diammonium citrate
        • NaCl
        • NaH 2 PO 4
        • Na 2 HPO 4
        • EDTA
        • MgCl 2
        • ABI3400 DNA/RNA synthesizer
        • Screw‐cap tubes or vials
        • 13‐mm syringe filter with 0.2‐µm nylon membrane (Life Sciences)
        • RP‐HPLC column: 21.2 × 250–mm Zorbax RX‐C8 (Agilent Technology) or 21 × 250–mm XB‐C18 (Welch Materials; http://www.instrument.com)
        • HPLC system with detector at 260 nm
        • Lyophilizer
        • Microcentrifuge tubes
        • Microcentrifuge
        • UV spectrophotometer
        • Additional reagents and equipment for automated oligonucleotide synthesis ( appendix 3C ), MALDI‐TOF mass spectrometry (unit 10.1 ), and determination of UV melting curves (unit 7.3 )
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Figures

        •   Figure 1.23.1 Synthetic scheme of the 2‐selenothymidine phosphoramidite (S.6 ) and the Se‐DNAs (S.7 ).
          View Image
        •   Figure 1.23.2 MALDI‐TOF mass spectrum of 2Se‐T 9‐mer (5′‐ATGGSeTGCTC‐3′); C88 H104 N32 O53 P8 Se, calculated: 2794.8, observed: 2794.2.
          View Image
        •   Figure 1.23.3 UV melting curves. (A ) Duplex of native DNAs 5′‐CTTCTTGTCCG‐3′ and 5′‐CGGACAAGAAG‐3′ ( T m = 42.6°C). (B ) Duplex of Se‐DNA 5′‐CTTCTTSe GTCCG‐3′ and native DNA 5′‐CGGACAACAAC‐3′ ( T m = 42.2°C).
          View Image

        Videos

        Literature Cited

        Literature Cited
           Basu, A.K., Loechler, E.L., Leadon, S.A., and Essigmann, J.M. 1989. Genetic effects of thymine glycol: Site‐specific mutagenesis and molecular modeling studies. Proc. Natl. Acad. Sci. U.S.A. 86:7677‐7781.
           Carrasco, N. and Huang, Z. 2004. Enzymatic synthesis of phosphoroselenoate DNA using thymidine 5′‐(α‐P‐seleno)triphosphate and DNA polymerase for X‐ray crystallography via MAD. J. Am. Chem. Soc. 126:448‐449.
           Cate, J.H., Gooding, A.R., Podell, E., Zhou, K., Golden, B.L., Kundrot, C.E., Cech, T.R., and Doudna, J.A. 1996. Crystal structure of group I ribozyme domain: Principles of RNA packing. Science 273:1678‐1685.
           Caton‐Williams, J. and Huang, Z. 2008. Synthesis and DNA‐polymerase incorporation of colored 4‐selenothymidine triphosphate for polymerase recognition and DNA visualization. Angew. Chem. Int. Ed. Engl. 47:1723‐1725.
           Drew, H.R., Wing, R.M., Takano, T., Broka, C., Tanaka, S., Itakura, K., and Dickerson, R.E. 1981. Structure of a B‐DNA dodecamer: Conformation and dynamics. Proc. Natl. Acad. Sci. U.S.A. 78:2179‐2183.
           Eoff, R.L., Irimia, A., Egli, M., and Guengerich, F.P. 2007. Sulfolobus solfataricus DNA polymerase Dpo4 is partially inhibited by “Wobble” pairing between O6‐methylguanine and cytosine, but accurate bypass is preferred. J. Biol. Chem. 282:1456‐1467.
           Hassan, A.E.A., Sheng, J., Zhang, W., and Huang, Z. 2010. High fidelity of base pairing by 2‐selenothymidine in DNA. J. Am. Chem. Soc. 132:2120‐2121.
           Herschlag, D. 1991. Implications of ribozyme kinetics for targeting the cleavage of specific RNA molecules in vivo: More isn't always better. Proc. Natl. Acad. Sci. U.S.A. 88:6921‐6925.
           Jiang, J., Sheng, J., Carrasco, N., and Huang, Z. 2007. Selenium derivatization of nucleic acids for crystallography. Nucleic Acids Res. 35:477‐485.
           Montange, R.K. and Batey, R.T. 2006. Structure of the S‐adenosylmethionine riboswitch regulatory mRNA element. Nature 441:1172‐1175.
           Salon, J., Sheng, J., Jiang, J., Chen, G., Caton‐Williams, J., and Huang, Z. 2007. Oxygen replacement with selenium at the thymidine 4‐Position for the Se base pairing and crystal structure studies. J. Am. Chem. Soc. 129:4862‐4863.
           Sheng, J., Jiang, J., Salon, J., and Huang, Z. 2007. Synthesis of a 2′‐Se‐thymidine phosphoramidite and its incorporation into oligonucleotides for crystal structure study. Org. Lett. 9:749‐752.
           Sheng, J., Salon, J., Gan, J.‐H., and Huang, Z. 2010. Synthesis and crystal structure study of 2′‐Se‐adenosine‐derivatized DNA. Sci. China, Ser. B: Chem. 53:78.
           Shiue, C.Y. and Chu, S.H. 1975. A facile synthesis of l‐β‐D‐arabinofuranosyl‐2‐seleno and −4‐selenouracil and related compounds. J. Org. Chem. 40:2971.
           Spratt, T.E. and Levy, D.E. 1997. Structure of the hydrogen bonding complex of O6‐methylguanine with cytosine and thymine during DNA replication. Nucleic Acids Res. 25:3354‐3361.
           Sussman, J.L. and Kim, S. 1976. Three‐dimensional structure of a transfer RNA in two crystal forms. Science 192:853‐858.
           Teplova, M., Wilds, C.J., Wawrzak, Z., Tereshko, V., Du, Q., Carrasco, N., Huang, Z., and Egli, M. 2002. Covalent incorporation of selenium into oligonucleotides for X‐ray crystal structure determination via MAD: Proof of principle. Multiwavelength anomalous dispersion. Biochimie 84:849‐858.
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library
         
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序