• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Methods for Meta‐Analysis of Genetic Data

        互联网

        943
        • Abstract
        • Table of Contents
        • Figures
        • Literature Cited

        Abstract

         

        Modern genetic association studies, using genome?wide genotype data, are often underpowered. Meta?analyses of multiple studies performing genome?wide genotyping improve power and have led to the identification of thousands of genotype?trait associations. This unit provides an overview of the key concepts required for genetic meta?analyses, and presents strategic approaches and key decisions that must be made in the process of performing genome?wide association study (GWAS) meta?analyses. The commentary discusses the interpretation of GWAS meta?analysis results, complications, and some of the possible next steps once a GWAS meta?analysis has successfully identified regions associated with a trait. Curr. Protoc. Hum. Genet. 77:1.24.1?1.24.8. © 2013 by John Wiley & Sons, Inc.

        Keywords: genome?wide association; GWAS; genetic association analysis; meta?analysis; common variants

             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Table of Contents

        • Introduction
        • Key Concepts
        • Discussion
        • Literature Cited
        • Figures
             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Materials

         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Figures

        •   Figure Figure 1.24.1 Example quantile‐quantile (Q‐Q) plots of ‐log10( p values) for GWAS. (A ) No true effects, and no test statistic inflation. (B ) No true effects, and minor test statistic inflation. (C ) True signal and no test statistic inflation. (D ) No true effects, and stronger test statistic inflation. (E ) True signal and mild test statistic inflation. (F ) Strong true signal and no test statistic inflation.
          View Image

        Videos

        Literature Cited

        Literature Cited
           Aulchenko, Y.S., Ripke, S., Isaacs, A., and van Duijn, C.M. 2007. GenABEL: An R library for genome‐wide association analysis. Bioinformatics 23:1294‐1296.
           Cochran, W.G. 1954. The combination of estimates from different experiments. Biometrics 10:101‐129.
           de Bakker, P.I., Ferreira, M.A., Jia, X., Neale, B.M., Raychaudhuri, S., and Voight, B.F. 2008. Practical aspects of imputation‐driven meta‐analysis of genome‐wide association studies. Hum. Mol. Genet. 17:R122‐R128.
           Devlin, B. and Roeder, K. 1999. Genomic control for association studies. Biometrics 55:997‐1004.
           Fisher, R.A. 1925. Statistical Methods for Research Workers. Oliver and Boyd, Edinburgh.
           Han, B. and Eskin, E. 2011. Random‐effects model aimed at discovering associations in meta‐analysis of genome‐wide association studies. Am. J. Hum. Genet. 88:586‐598.
           Han, B. and Eskin, E. 2012. Interpreting meta‐analyses of genome‐wide association studies. PLoS Genet. 8:e1002555.
           Hardy, R.J. and Thompson, S.G. 1998. Detecting and describing heterogeneity in meta‐analysis. Stat. Med. 17:841‐856.
           Higgins, J.P. and Thompson, S.G. 2002. Quantifying heterogeneity in a meta‐analysis. Stat. Med. 21:1539‐1558.
           Ioannidis, J.P., Patsopoulos, N.A., and Evangelou, E. 2007. Heterogeneity in meta‐analyses of genome wide association investigations. PLoS One 2:e841.
           Li, Y., Willer, C.J., Ding, J., Scheet, P., and Abecasis, G.R. 2010. MaCH: Using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 34:816‐834.
           Lin, D.Y. and Zeng, D. 2010. Meta‐analysis of genome‐wide association studies: No efficiency gain in using individual participant data. Genet. Epidemiol. 34:60‐66.
           Magi, R. and Morris, A.P. 2010. GWAMA: Software for genome‐wide association meta‐analysis.BMC Bioinformatics 11:288.
           Manning, A.K., LaValley, M., Liu, C.T., Rice, K., An, P., Liu, Y., Miljkovic, I., Rasmussen‐Torvik, L., Harris, T.B., Province, M.A., Borecki, I.B., Florez, J.C., Meigs, J.B., Cupples, L.A., and Dupuis, J. 2010. Meta‐analysis of gene‐environment interaction: Joint estimation of SNP and SNP x environment regression coefficients. Genet. Epidemiol. 35:11‐18.
           Morris, A.P. 2011. Transethnic meta‐analysis of genomewide association studies. Genet. Epidemiol. 35:809‐822.
           Purcell, S., Neale, B., Todd‐Brown, K., Thomas, L., Ferreira, M.A., Bender, D., Maller, J., Sklar, P., de Bakker, P.I., Daly, M.J., and Sham, P.C. 2007. PLINK: A tool set for whole‐genome association and population‐based linkage analyses. Am. J. Hum. Genet. 81:559‐575.
           Stouffer, S.A., Suchman, E.A., Devinney, L.C., Star, S.A., and Williams, R.M. Jr. 1949. The American Soldier: Adjustment During Army Life. Princeton University Press, Princeton, New Jersey.
           Willer, C.J., Li, Y., and Abecasis, G.R. 2010. METAL: Fast and efficient meta‐analysis of genomewide association scans. Bioinformatics 26:2190‐2191.
           Yang, J., Ferreira, T., Morris, A.P., Medland, S.E., Madden, P.A., Heath, A.C., Martin, N.G., Montgomery, G.W., Weedon, M.N., Loos, R.J., Frayling, T.M., McCarthy, M.I., Hirschhorn, J.N., Goddard, M.E., and Visscher, P.M. 2012. Conditional and joint multiple‐SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 44:369‐375.
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library
         
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序