丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

The Extraction of Information and Knowledge from Trained Neural Networks

互联网

494
In the past, neural networks were viewed as classification and regression systems whose internal representations were incomprehensible. It is now becoming apparent that algorithms can be designed that extract comprehensible representations from trained neural networks, enabling them to be used for data mining and knowledge discovery, that is, the discovery and explanation of previously unknown relationships present in data. This chapter reviews existing algorithms for extracting comprehensible representations from neural networks and outlines research to generalize and extend the capabilities of one of these algorithms, TREPAN. This algorithm has been generalized for application to bioinformatics data sets, including the prediction of splice site junctions in human DNA sequences, and cheminformatics. The results generated on these data sets are compared with those generated by a conventional data mining technique (C5) and appropriate conclusions are drawn.
ad image
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序