• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Tutorial: Multivariate Statistical Treatment of Imaging Data for Clinical Biomarker Discovery

        互联网

        520
        Cancer research is one of the most promising application areas for the new technology of MALDI tissue imaging. Cancerous tissue can easily be distinguished from healthy tissue by dramatically changed metabolism, growth, and apoptotic processes. Of even higher interest is the fact that MALDI imaging allows to unveil molecular differentiation undetectable by classical histological techniques. Thus, MALDI imaging has tremendous potential as a tool to characterize the therapeutic susceptibility of tumors in biopsies as well as to predict tumor progression in endpoint studies. However, some aspects are important to consider for a successful MALDI imaging-based cancer research. Cancer sections are usually very heterogeneous – different biochemical pathways can be active in individual tumor clones, at different development stages or in various tumor microenvironments. Understanding tissue at this level is only possible for experienced histopathologists working on high-resolution optical images. Therefore, the largest benefit from the use of MALDI imaging results in histopathology will arise if molecular images are related to classical high-resolution histological images in a simple way without the need to interpret mass spectra directly. Each MALDI imaging data set effectively provides information on hundreds of molecules and permits the generation of molecular images displaying the relative abundance of these molecules across the tissue. The interpretation of these in the histological context is a major challenge in terms of expert analysis time. This is true especially for clinical work with hundreds of tissue specimens to be analyzed by MALDI, interpreted, and compared. Therefore, a MALDI imaging workflow is described here that enables fast and unambiguous interpretation of the MALDI imaging data in the histological context. Preprocessing of the image data using statistical tools allows efficient and straightforward interpretation by the histopathologist. In this chapter, we explain the use of principal component analysis (PCA) and hierarchical clustering (HC) for the efficient interpretation of MALDI imaging data. We also outline how these methods can be used to compare specific disease states between patients in the search for biomarkers.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序