• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Bioinformatics for RNomics

        互联网

        495
        Rapid improvements in high-throughput experimental technologies make it nowadays possible to study the expression, as well as changes in expression, of whole transcriptomes under different environmental conditions in a detailed view. We describe current approaches to identify genome-wide functional RNA transcripts (experimentally as well as computationally), and focus on computational methods that may be utilized to disclose their function. While genome databases offer a wealth of information about known and putative functions for protein-coding genes, functional information for novel non-coding RNA genes is almost nonexistent. This is mainly explained by the lack of established software tools to efficiently reveal the function and evolutionary origin of non-coding RNA genes. Here, we describe in detail computational approaches one may follow to annotate and classify an RNA transcript.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序