• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Designing a GWAS: Power, Sample Size, and Data Structure

        互联网

        644
        In this chapter we describe a novel Bayesian approach to designing GWAS studies with the goal of ensuring robust detection of effects of genomic loci associated with trait variation.
        The goal of GWAS is to detect loci associated with variation in traits of interest. Finding which of 500,000—1,000,000 loci has a practically significant effect is a difficult statistical problem, like finding a needle in a haystack. We address this problem by designing experiments to detect effects with a given Bayes factor, where the Bayes factor is chosen sufficiently large to overcome the low prior odds for genomic associations. Methods are given for various possible data structures including random population samples, case–control designs, transmission disequilibrium tests, sib-based transmission disequilibrium tests, and other family-based designs including designs for plants with clonal replication. We also consider the problem of eliciting prior information from experts, which is necessary to quantify prior odds for loci. We advocate a “subjective” Bayesian approach, where the prior distribution is considered as a mathematical representation of our prior knowledge, while also giving generic formulae that allow conservative computations based on low prior information, e.g., equivalent to the information in a single sample point. Examples using R and the R packages ldDesign are given throughout.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序