• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Mixed Effects Structural Equation Models and Phenotypic Causal Networks

        互联网

        430
        Complex networks with causal relationships among variables are pervasive in biology. Their study, however, requires special modeling approaches. Structural equation models (SEM) allow the representation of causal mechanisms among phenotypic traits and inferring the magnitude of causal relationships. This information is important not only in understanding how variables relate to each other in a biological system, but also to predict how this system reacts under external interventions which are common in fields related to health and food production. Nevertheless, fitting a SEM requires defining a priori the causal structure among traits, which is the qualitative information that describes how traits are causally related to each other. Here, we present directions for the applications of SEM to investigate a system of phenotypic traits after searching for causal structures among them. The search may be performed under confounding effects exerted by genetic correlations.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序