• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Methods for Studying Habitual Behavior in Mice

        互联网

        832
        • Abstract
        • Table of Contents
        • Materials
        • Figures
        • Literature Cited

        Abstract

         

        Habit formation refers to the process by which goal?directed behavior becomes automatized and less sensitive to changes in the value of the goal. It has clear relevance for our understanding of skill learning and addiction. Recent studies have begun to reveal the neural substrates underlying this process. This unit summarizes what is known about the experimental methods used, and provides a protocol for generating and assessing habit formation in mice. Curr. Protoc. Neurosci. 60:8.29.1?8.29.9. © 2012 by John Wiley & Sons, Inc.

        Keywords: operant; habit; instrumental conditioning; action selection; mouse behavior

             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Table of Contents

        • Introduction
        • Basic Protocol 1: Generating Habitual Operant Responding in Mice
        • Alternate Protocol 1: Alternative Devaluation Method Using Lithium Chloride Injection (3 Days)
        • Commentary
        • Literature Cited
        • Figures
             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Materials

        Basic Protocol 1: Generating Habitual Operant Responding in Mice

          Materials
        • Mice: e.g., C57BL/6J from Jackson Laboratories or any other mouse of interest (at least 6 weeks of age; 20 to 30 g each)
        • 14 mg pellets (dustless precision pellets for mice, Bio‐Serv)
        • Clean cages for prefeeding (one cage per mouse; in addition to the home cages)
        • Operant chambers (commercially available e.g., Med Associates) each housed inside a light‐resistant and sound‐attenuating box (each operant chamber is 21.6‐cm long × 17.8‐cm wide × 12.7‐cm high and has two retractable levers, a pellet receptacle between them, and a house light (3 W, 24 V) on the opposite wall
        • Desktop computer with Microsoft Windows operating system
        • Med Associates behavioral software: Med‐PC and Trans‐IV
          • Behavioral program for continuous reinforcement (CRF)
          • Behavioral programs for random interval schedules (RI30 and RI60)
          • Behavioral program for extinction test
        • Infrared photo beam
        • Scale for weighing food and mice
        • Med‐PC to Excel (Med Associates)
        NOTE: Behavioral programs can be written by the experimenter or adapted from open‐source repositories such as the Medstate Notation Repository.

        Alternate Protocol 1: Alternative Devaluation Method Using Lithium Chloride Injection (3 Days)

        • Lithium chloride solution (Sigma Chemical; 0.15 M, 40 ml/kg intraperitoneal)
        • 1‐ml syringes
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Figures

        •   Figure Figure 8.29.1 Each operant chamber (21.6‐cm long × 17.8‐cm wide × 12.7‐cm high) should be housed within a light‐resistant and sound‐attenuating box. Each chamber has a pellet receptacle in the center of one wall where food pellets are dispensed via an external pellet dispenser. On either side of the receptacle are retractable levers, and on the opposite wall, a 3 W, 24 V house light.
          View Image
        •   Figure Figure 8.29.2 Example of a mouse performing on an operant task.
          View Image
        •   Figure Figure 8.29.3 Data from a devaluation test adapted from a published study (Yu et al., ). Abbreviations: WT, wild‐type mice; KO, A2A adenosine receptor knockout mice.
          View Image

        Videos

        Literature Cited

        Literature Cited
           Adams, C.D. 1982. Variations in the sensitivity of instrumental responding to reinforcer devaluation. Q. J. Exp. Psychol. 33B:109‐122.
           Adams, C.D. and Dickinson, A. 1981. Instrumental responding following reinforcer devaluation. Q. J. Exp. Psychol. 33:109‐122.
           Colwill, R.M. and Rescorla, R.A. 1985. Postconditioning devaluation of a reinforcer affects instrumental responding. J. Exp. Psychol. Animal Behav. Proc. 11:120‐132.
           Colwill, R.M. and Rescorla, R.A. 1986. Associative structures in instrumental learning. In The Psychology of Learning and Motivation, Vol. 20 (G. Bower, ed.) pp. 55‐104. Academic Press, New York.
           Derusso, A.L., Fan, D., Gupta, J., Shelest, O., Costa, R.M., and Yin, H.H. 2010. Instrumental uncertainty as a determinant of behavior under interval schedules of reinforcement. Front. Integr. Neurosci. 4.
           Dickinson, A. 1985. Actions and habits: the development of behavioural autonomy. Phil. Trans. Royal Soc. B308:67‐78.
           Dickinson, A. 1994. Instrumental conditioning. In Animal Learning and Cognition (N.J. Mackintosh, ed.) pp. 45‐79. Academic Press, Orlando, Fla.
           Dickinson, A., Nicholas, D.J., and Adams, C.D. 1983. The effect of the instrumental training contingency on susceptibility to reinforcer devaluation. Q. J. Exp. Psychol. Comp. Physiol. Psychol. 35:35‐51.
           Ferster, C. and Skinner, B.F. 1957. Schedules of Reinforcement. Appleton Century, New York.
           Hammond, L.J. 1980. The effect of contingency upon the appetitive conditioning of free‐operant behavior. J. Exp. Anal. Behav. 34:297‐304.
           Hilario, M.R.F., Clouse, E., Yin, H.H., and Costa, R.M. 2007. Endocannabinoid signaling is critical for habit formation. Front. Integr. Neurosci. 1:6.
           Skinner, B.F. 1938. The Behavior of Organisms. Appleton‐Century‐Crofts, New York.
           Yin, H.H. and Knowlton, B.J. 2006. The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7:464‐476.
           Yin, H.H., Knowlton, B.J., and Balleine, B.W. 2004. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur. J. Neurosci. 19:181‐189.
           Yin, H.H., Knowlton, B.J., and Balleine, B.W. 2005a. Blockade of NMDA receptors in the dorsomedial striatum prevents action‐outcome learning in instrumental conditioning. Eur. J. Neurosci. 22:505‐512.
           Yin, H.H., Ostlund, S.B., Knowlton, B.J., and Balleine, B.W. 2005b. The role of the dorsomedial striatum in instrumental conditioning. Eur. J. Neurosci. 22:513‐523.
           Yin, H.H., Knowlton, B.J., and Balleine, B.W. 2006. Inactivation of dorsolateral striatum enhances sensitivity to changes in the action‐outcome contingency in instrumental conditioning. Behav. Brain Res. 166:189‐196.
           Yin, H.H., Ostlund, S.B., and Balleine, B.W. 2008. Reward‐guided learning beyond dopamine in the nucleus accumbens: The integrative functions of cortico‐basal ganglia networks. Eur. J. Neurosci. 28:1437‐1448.
           Yu, C., Gupta, J., Chen, J.F., and Yin, H.H. 2009. Genetic deletion of A2A adenosine receptors in the striatum selectively impairs habit formation. J. Neurosci. 29:15100‐15103.
           Yu, C., Gupta, J., and Yin, H.H. 2010. The role of mediodorsal thalamus in temporal differentiation of reward‐guided actions. Front. Integr. Neurosci. 4.
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library
         
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序