• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Statistics in Experimental Stroke Research: From Sample Size Calculation to Data Description and Significance Testing

        互联网

        481
        Experimental stroke researchers take samples from populations (e.g., certain mouse strains), and make inferences about unknown parameters (e.g., infarct sizes, outcomes). They use statistics to describe their data, and they seek formal ways to decide whether their hypotheses are true (“Compound X is a neuroprotectant”). Unfortunately, experimental stroke research at present lacks statistical rigor in designing and analyzing its results, and this may have negative consequences for its predictiveness. This chapter aims at giving a general introduction into the do’s and don’t’s of statistical analysis in experimental stroke research. In particular, we will discuss how to design an experimental series and calculate necessary sample sizes, how to describe data with graphics and numbers, and how to apply and interpret formal tests for statistical significance. A surprising conclusion will be that there are no formal ways of deciding whether a hypothesis is correct or not and that we should focus instead on biological (or clinical) significance as measured in the size of an effect and on the implications of this effect for the biological system or organism. “Good evidence” that a hypothesized effect is real comes from replication across multiple studies; it cannot be inferred from the result of a single statistical test.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序