• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Characterization of Neurotensin Receptors

        互联网

        954
        • Abstract
        • Table of Contents
        • Materials
        • Figures
        • Literature Cited

        Abstract

         

        This unit describes procedures for performing competition binding assays with neurotensin receptor subtypes 1 and 2 (NTS1 and NTS2). Binding assays using cloned receptors, brain membranes, and primary cultured mesencephalic neurons are presented. NTS1 binding assays employing either radiolabeled neurotensin or SR 48692 (a nonpeptide neurotensin antagonist) as radioligands are described. These procedures may be used to screen selective ligands at neurotensin receptor subtypes.

        Keywords: neurotensin; SR 48692; neurotensin receptors; NTS1; NTS2; binding assay; brain membranes; mesencephalic neurons

             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Table of Contents

        • Basic Protocol 1: Measurement of [125I]Neurotensin Binding to Cloned Receptors in Membranes
        • Alternate Protocol 1: Measurement of [3H]SR 48692 Binding to Cloned NTS1 Receptors in Membranes
        • Alternate Protocol 2: Measurement of 125I‐Neurotensin Binding to Homogenates from Newborn Mouse Brain
        • Alternate Protocol 3: Measurement of 125I‐Neurotensin Binding to Intact Rat Embryonic Mesencephalic Neurons in Primary Cultures
        • Reagents and Solutions
        • Commentary
        • Literature Cited
        • Figures
        • Tables
             
         
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Materials

        Basic Protocol 1: Measurement of [125I]Neurotensin Binding to Cloned Receptors in Membranes

          Materials
        • Cell lines expressing the appropriate cloned neurotensin receptor (e.g., CHO, COS, LTK ) grown to confluency in 100‐mm culture dishes
        • PBS (e.g., Life Technologies)
        • Tris buffer 1 for preparing cell membranes (see recipe ), 4°C
        • Protein concentration kit (Bio‐Rad protein assay kit, Bio‐Rad Laboratories)
        • Tris buffer 2 for binding assay (see recipe ), room temperature and 4°C
        • 125 I‐NT (2000 Ci/mmol; PE Life Sciences, Amersham)
        • Test compounds
        • Unlabeled NT (Neosystem)
        • Rubber scraper
        • 20‐ml syringe with 21‐G needle (5‐cm length, 0.8‐mm diameter)
        • 5‐ml plastic tubes
        • Cellulose acetate filters (0.2‐µm, 25 mm; Sartorius)
        • Filtration unit (1 to 36 filters, Waters Millipore)
        • Gamma counter

        Alternate Protocol 1: Measurement of [3H]SR 48692 Binding to Cloned NTS1 Receptors in Membranes

        • [3 H]SR 48692 (86 Ci/mmol; Amersham Pharmacia Biotech)
        • Stock solution (1 to 10 mM) of unlabeled SR 48692 (Sanofi‐Synthélabo) in dimethylsulfoxide (DMSO)
        • Water‐compatible scintillation cocktail
        • Software such as GraphPad Prism or LIGAND

        Alternate Protocol 2: Measurement of 125I‐Neurotensin Binding to Homogenates from Newborn Mouse Brain

        • 7‐day‐old mice
        • Tris‐EDTA buffer 3 for homogenizing brain tissue (see recipe ), 4°C
        • Tris buffer 4 for binding assay (see recipe ), room temperature
        • Polytron homogenizer
        • Additional reagents and equiment for assaying protein content ( appendix 3A )

        Alternate Protocol 3: Measurement of 125I‐Neurotensin Binding to Intact Rat Embryonic Mesencephalic Neurons in Primary Cultures

        • Mesencephalic primary cultures grown in 24‐well culture plates, prepared according to described protocols (Brouard et al., )
        • Serum‐free binding medium (see recipe ), room temperature
        • Serum‐free rinsing medium (see recipe ), 4°C
        • 0.1 N sodium hydroxide
        • Vacuum source with intermediate medium‐receiving flask with attached Pasteur pipet
        • 37°C, 5% CO 2 humidified incubator
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library

        Figures

        •   Figure 1.29.1 Competitive inhibition of 125 I‐NT binding by unlabeled NT and SR 48692 in membranes from NTS1‐expressing CHO cells. The data are derived from Table and were fitted using LIGAND software. K i values are 0.17 nM and 11.2 nM for NT and SR 48692, respectively.
          View Image
        •   Figure 1.29.2 Competitive inhibition of 125 I‐NT binding by unlabeled NT, SR 48692, and levocabastine in membranes from NTS2‐expressing COS cells. The data are derived from Table and were fitted using LIGAND software. K i values are 1.44 nM, 420 nM, and 170 nM for NT, SR 48692, and levocabastine, respectively.
          View Image
        •   Figure 1.29.3 Competitive inhibition of [3 H]SR 48692 binding by unlabeled NT and SR 48692 in membranes from NTS1‐expressing CHO cells. The data are derived from Table and were fitted using LIGAND software. The K i value is 5.6 nM for SR 48692. Note the complex inhibition curve obtained with unlabeled NT (see Commentary for discussion).
          View Image
        •   Figure 1.29.4 Competitive inhibition of 125 I‐NT binding by unlabeled NT and SR 48692 in primary cultures of mesencephalic cells. The data are derived from Table and were fitted using Prism (GraphPad) software. K i values are 0.31 nM and 2.1 nM for NT and SR 48692, respectively.
          View Image

        Videos

        Literature Cited

        Literature Cited
           Bachelet, CM., Scarceriaux, V., Rostene, W., and Pelaprat, D. 1997. Evidence for neurotensin autoreceptors and relationship of neurotensin and its receptors with tyrosine hydroxylase‐positive neurons in rat primary hypothalamic cultures. Eur. J. Neurosci. 9:1483‐1487.
           Brouard, A., Pelaprat, D., Dana, C., Vial, M., Lhiaubet, A.M., and Rostene, W. 1992. Mesencephalic dopaminergic neurons in primary culture express functional neurotensin receptors. J. Neurosci. 12:1409‐1415.
           Dubuc, I., Sarret, P., Labbé‐Jullié, C., Botto, J.M., Honoré, E., Bourdel, E., Martinez, J., Costentin, J., Vincent, J.P., Kitabgi, P., and Mazella, J. 1999. Identification of the receptor subtype involved in the analgesic effect of neurotensin. J. Neurosci. 19:503‐510.
           Gully, D., Canton, M., Boigegrain, R., Jeanjean, F., Molimard, J.C., Poncelet, M., Gueudet, C., Heaulme, M., Leyris, R., Brouard, A., Pelaprat, D., Labbé‐Jullié, C., Mazella, J., Soubrié, P., Maffrand, J.P., Rostène, W., Kitabgi, P., and Le Fur, G. 1993. Biochemical and pharmacological profile of a potent and selective nonpeptide antagonist of the neurotensin receptor. Proc. Natl. Acad. Sci. U.S.A. 90:65‐69.
           Gully, D., Labeeuw, B., Boigegrain, R., Oury‐Donat, F., Bachy, A., Poncelet, M., Steinberg, R., Suaud‐Chagny, M.F., Santucci, V., Vita, N., Pecceu, F., Labbé‐Jullié, C., Kitabgi, P., Soubrie, P., Le Fur, G., and Maffrand, J.P. 1997. Biochemical and pharmacological activities of SR 142948A, a new potent neurotensin receptor antagonist. J. Pharmacol. Exp. Ther. 280:802‐812.
           Kitabgi, P. 1992. Biosynthesis, maturation, release, and degradation of neurotensin and neuromedin. N. Ann. N.Y. Acad. Sci. 668:30‐42.
           Kitabgi, P. 2002. Targeting neurotensin receptors with agonists and antagonists for therapeutic purposes. Curr. Opin. Drug Discovery Dev. 5:764‐776.
           Kitabgi, P., Rostène, W., Dussaillant, M., Schotte, A., Laduron, P., and Vincent, J.P. 1987. Two populations of neurotensin binding sites in murine brain: discrimination by the antihistamine levocabastine reveals markedly different radioautographic distribution. Eur. J. Pharmacol. 140:285‐293.
           Labbé‐Jullié, C., Botto, J.M., Mas, M.V., Chabry, J., Mazella, J., Vincent, J.P., Gully, D., Maffrand, J.P., and Kitabgi, P. 1995. [3H]SR 48692, the first nonpeptide neurotensin antagonist radioligand; characterization of binding properties and evidence for distinct agonist and antagonist binding domains on the rat neurotensin receptor. Mol. Pharmacol. 47:1050‐1056.
           Labbé‐Jullié, C., Deschaintres, S., Gully, D., Le Fur, G., and Kitabgi, P. 1994. Effect of the nonpeptide neurotensin antagonist SR 48692 and two enantiomeric analogs SR 48527 and SR 49711 on neurotensin binding and contractile responses in guinea‐pig ileum and colon. J. Pharm. Exp. Ther. 271:267‐276.
           Lépée‐Lorgeoux, I., Betancur, C., Souazé, F., Rostène, W., Bérod, A., and Pelaprat, D. 2000. Regulation of the neurotensin NT1 receptor in the developing rat brain following chronic treatment with the antagonist SR 48692. J. Neurosci. Res. 60:362‐369.
           Mazella, J. 2001. Sortilin/neurotensin receptor 3: A new tool to investigate neurotensin signaling and trafficking? Cell. Signal. 13:1‐6.
           Richard, F., Barroso, S., Martinez, J., Labbé‐Jullié, C., and Kitabgi, P. 2001. Agonism, inverse agonism and neutral antagonism at the constitutively active human neurotensin receptor 2. Mol. Pharmacol. 60:1392‐1398.
           Scarceriaux, V., Pelaprat, D., Forgez, P., Lhiaubet, A.M., and Rostene, W. 1995. Effects of dexamethasone and forskolin on neurotensin production in rat hypothalamic cultures. Endocrinology 136:2554‐2560.
           Vincent, J.P., Mazella, J., and Kitabgi, P. 1999. Neurotensin and neurotensin receptor. Trends Pharmacol. Sci. 20:302‐309.
        GO TO THE FULL PROTOCOL:
        PDF or HTML at Wiley Online Library
         
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序