• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Scientific Background

        互联网

        792
        The complete reproductive cycle of Xenopus spans up to 18 mo from the earliest stages of oogenesis to the sexually mature adult. Owing to its popularity as an embryonic model, the long arduous path to adulthood in Xenopus has been thoroughly documented (see Deuchar, 1966, Deuchar, 1975; Nieuwkoop and Faber, 1967, Nieuwkoop and Faber, 1994; Dumont, 1972). For an excellent overview of early events in amphibian development—especially Xenopus —the reader is referred to Scott Gilbert’s textbook Developmental Biology (1994). A beautiful color atlas depicting early events in Xenopus development is also available (Hausen and Riebesell, 1991). Moreover, a detailed fate map of the 32-cell Xenopus embryo has been published (Dale and Slack, 1987). Much of our knowledge about the molecular processes mediating early Xenopus development has been obtained using microinjection protocols; some of these achievements are presented in Table 1 . A brief description of the principal developmental events pertaining to the use of microinjected Xenopus oocytes and embryos are presented in the next section.
        Table 1  Developmental Processes Studied in Microinjected Xenopus Embryos

        Process

        Molecules examined (ref.)

        Gastrulation and morphogenetic cell movements

        Goosecoid (1) ; nodal-related (2)

        Mesoderm induction and dorso-ventral axial patterning

        TGF-β receptor (3) ; Xwnt-8 (4) ; Raf-1 (5) ; FGF receptor (6) ; FGF receptor/ activin (7) ; BMP (8) ; N-cadherin (9) ; GSK-3 (10) ; brachyury/pintallavis (11)

        Neural induction and antero-posterior axial patterning

        Noggin (12) ; XASH (13) ; follistatin (14) ; activin/activinR (15) ; XIPOU 2 (16) ; Xotz2 (17) ; hedgehog (18) ; Xlim-1 (19)

        Neuronal differentiation

        Pintallavis (20) ; vhh-1 (21) ; neuroD (22)

        Myogenesis

        MyoD (23) ; MyoD (24) /Myf5

        Somitogenesis

        Vimentin/desmin (25)

        NMJ development

        AChE (26) ; AChR (27) ; synapsin I (28) ; synapsin Ha (29) ; synaptophysin (30)

        Cell adhesion

        EP-cadherin (31) ; B-catenin (32)

        Gap junctional communication

        Wnt-1 (33) ; connexins (34)

        Tissue-specific gene regulation transcriptional

        E12 (35)/MyoD ; distal-less-like-2 (Xdll-2) (36) ; TFIIIA (37) ; TFIID (3&)/MEF2/XMyoD

        Tissue-specific gene regulation posttranscriptional

        AChE (39)

        a References 1 , Niehrs et al. (1993); 2 , Smith et al. (1995); 3, Amaya et al. (1991); 4, Christian and Moon (1993); 5, MacNicol et al. (1993); 6 , Bhushan et al. (1994); 7, Cornell and Kimelman (1994); 8, Graff et al. (1994); 9 , Holt et al. (1994); 10 , He et al. (1995); 11 , O’Reilly et al. (1995); 12 , Lamb et al. (1993); 13 , Ferreiro et al. (1994); 14 , Hemmati-Brivanlou et al. (1994); 15 , Hemmati-Brivanlou and Melton (1994); 16 , Witta et al. (1995); 17 , Blitz and Cho (1995); 18 , Lai et al. (1995); 19 , Taira et al. (1995); 20 , Ruiz i Altaba et al. (1993); 21 , Roelink et al. (1994); 22 , Lee et al. (1995); 23 , Hopwood and Gurdon (1990); 24 , Ludolph et al. (1994); 25 , Cary and Klymkowsky (1995); 26 , Ben Aziz-Aloya et al. (1993a); Seidman et al. (1994); 27 , Shapira et al. (1994); 28 , Lu et al. (1992), Valtorta et al. (1995); 29 , Schaeffer et al. (1994); 30 , Alder et al. (1995); 31 , Heasman et al. (1994); 32 , McCrea et al. (1993); 33 , Olson et al. (1991); 34 , Paul et al. (1995); 35 , Rashbass et al. (1992); 36 , Morasso et al. (1993); 37 , Rollins et al. (1993); 38 , Leibham et al. (1994); 39 , Seidman et al. (1995).
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序