• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Detection of Driver Protein Complexes in Breast Cancer Metastasis by Large-Scale TranscriptomeInteractome Integration

        互联网

        474
        With the development of high-throughput gene expression profiling technologies came the opportunity to define genomic signatures predicting clinical condition or cancer patient outcome. However, such signatures show dependency on training set, lack of generalization, and instability, partly due to microarray data topology. Additional issues for analyzing tumor gene expression are that subtle molecular perturbations in driver genes leading to cancer and metastasis (masked in typical differential expression analysis) may provoke expression changes of greater amplitude in downstream genes (easily detected). In this chapter, we are describing an interactome-based algorithm, Interactome–Transcriptome Integration (ITI) that is used to find a generalizable signature for prediction of breast cancer relapse by superimposition of a large-scale protein–protein interaction data (human interactome) over several gene expression datasets. ITI extracts regions in the interactome whose expression is discriminating for predicting relapse-free survival in cancer and allow detection of subnetworks that constitutes a generalizable and stable genomic signature. In this chapter, we describe the practical aspects of running the full ITI pipeline (subnetwork detection and classification) on six microarray datasets.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序