• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        A User-Friendly Computational Workflow for the Analysis of MicroRNA Deep Sequencing Data

        互联网

        461
        Second-generation high-throughput sequencing is a robust and inexpensive methodology that is becoming an increasingly common technique for the study of microRNA (miRNA) expression levels in the central nervous system. This method allows for the identification of both known and novel miRNAs, reporting on the qualitative and quantitative levels these RNA species represent in any given sample. Numerous bioinformatic programs are currently available to analyze deep sequencing data but many require at least a partial understanding of the command line interface. In this chapter, we describe a user-friendly computational workflow guiding the user through the process from the initial FASTQ deep sequencing file to the identification of known and potentially novel miRNAs in a given experiment, as well as the assessment of the differential expression of these miRNAs between experimental samples. Furthermore, programs that can predict potential targets for these miRNAs are also highlighted.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序