丁香实验_LOGO
登录
提问
我要登录
|免费注册
点赞
收藏
wx-share
分享

Time‐Dependent Thermocontrol of the Hydrophilic and Lipophilic Properties of DNA Oligonucleotide Prodrugs

互联网

2031
  • Abstract
  • Table of Contents
  • Materials
  • Figures
  • Literature Cited

Abstract

 

This unit describes the preparation of alkylthioalkylated and formamidoalkylated alcohols, an amidoalkylated alcohol, a hydroxylalkylated phosphoramidate, and their phosphoramidothioate derivatives, all of which have been identified as heat?sensitive thiophosphate?protecting groups in the development of thermolytic immunostimulatory DNA prodrugs. The alcohols are converted to their deoxyribonucleoside phosphoramidite derivatives, which are then used in the preparation of thermosensitive dinucleoside phosphorothioates. The thiophosphate?protecting groups of these dinucleoside phosphorothioates presumably undergo thermolytic cyclodeesterification at elevated temperature under essentially neutral conditions to release the desired phosphorothioate diester function. On the basis of their thermolytic deprotection kinetics, one can identify those thiophosphate?protecting groups that (i) may be useful for thiophosphate protection of CpG motifs of immunostimulatory DNA oligonucleotides (CpG ODNs); (ii) are suitable for protection of phosphodiester functions flanking the CpG motifs; and (iii) offer adequate protection of terminal phosphodiester functions against ubiquitous extracellular and intracellular exonucleases that may be found in biological environments. Curr. Protoc. Nucleic Acid Chem. 43:4.42.1?4.42.31. © 2010 by John Wiley & Sons, Inc.

Keywords: oligonucleotide prodrugs; thiophosphate protecting groups; thermolytic deprotection; thermolytic conditions; solid?phase oligonucleotide synthesis; CpG ODNs; lipophilicity; hydrophilicity

     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Table of Contents

  • Introduction
  • Basic Protocol 1: Synthesis, Purification, and Characterization of Alkylthioalkylated Alcohols
  • Basic Protocol 2: Synthesis, Purification, and Characterization of Formamidoalkylated Alcohols
  • Basic Protocol 3: Synthesis, Purification, and Characterization of Hydroxyalkylated Phosphoramidate and Phosphoramidothioate Derivatives
  • Basic Protocol 4: Synthesis, Purification, and Characterization of Alkylthioalkylated, Formamidoalkylated, Phosphoramidated, and Phosphoramidothioated Deoxyribonucleoside Phosphoramidite Derivatives
  • Basic Protocol 5: Solid‐Phase Synthesis of Thermosensitive Dinucleoside Phosphorothioate Triesters and Their Conversion to Phosphorothioate Diesters Under Thermolytic Conditions
  • Basic Protocol 6: Automated Solid‐Phase Synthesis of a Heat‐Sensitive DNA Prodrug Model and Its Selective Thermolytic Deprotection
  • Commentary
  • Literature Cited
  • Figures
  • Tables
     
 
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Materials

Basic Protocol 1: Synthesis, Purification, and Characterization of Alkylthioalkylated Alcohols

  Materials
  • Sodium methyl mercaptide (Acros)
  • 6‐Chlorohexan‐1‐ol (Aldrich)
  • Chloroform (Fisher)
  • Anhydrous sodium sulfate (Fisher)
  • Methylene chloride (CH 2 Cl 2 ; Fisher)
  • Silica gel (60 Å, 230 to 400 mesh; Merck)
  • Methanol (Fisher)
  • Phosphomolybdic acid (Aldrich)
  • Methyl 5‐chlorovalerate (Aldrich)
  • Diethyl ether and anhydrous diethyl ether (Et 2 O; Fisher)
  • Dry argon gas cylinder (Matheson)
  • Lithium aluminum hydride (LiAlH 4 ; Aldrich)
  • Anhydrous tetrahydrofuran (THF; Acros)
  • Sulfuric acid (Aldrich)
  • Hexane (Fisher)
  • Ethyl acetate (EtOAc; American Bioanalytical)
  • 5‐Chloropentan‐1‐ol
  • Sodium ethoxide (Aldrich)
  • Ethanol and anhydrous ethanol (Aldrich)
  • 2‐Propanethiol (Aldrich)
  • 4‐Mercaptobutan‐1‐ol (Aldrich)
  • 1‐Trifluoromethyl‐1,3‐dihydro‐3,3‐dimethyl‐1,2‐benziodoxole (Kieltsch et al., )
  • Sodium hydroxide (NaOH; Aldrich)
  • Chloromethyl methyl ether (Aldrich)
  • 2‐(Methylthio)ethanol (Aldrich)
  • Anhydrous 1,2‐dimethoxyethane (Aldrich)
  • Sodium hydride, 60% dispersion in mineral oil (Aldrich)
  • Ethyl bromoacetate (Aldrich)
  • Potassium hydroxide (KOH; Fisher)
  • Dimethyl sulfoxide (DMSO; Acros)
  • Benzene (Aldrich)
  • Acetic anhydride (Acros)
  • 1,3‐Propanediol (Aldrich)
  • Amberlyst H+ (Sigma)
  • Hydrochloric acid (Fisher)
  • Anhydrous magnesium sulfate (Aldrich)
  • Ethylene glycol (Aldrich)
  • 1‐, 5‐, and 10‐mL plastic syringes (BD)
  • 10‐, 25‐, 100‐, 250‐, and 500‐mL round‐bottom flasks (Kontes)
  • Rubber septa for 14/20‐ and 24/40‐glass joints (Aldrich)
  • 100‐ and 250‐mL Erlenmeyer flasks (Kimax)
  • 50‐, 100‐, 250‐, and 500‐mL separatory funnels (Kontes)
  • 30‐, 60‐, and 100‐mm funnels (Nalgene)
  • Whatman no. 1 filter paper
  • Rotary evaporator (Büchi) connected to a vacuum pump (KNF)
  • 2.5 × 20–cm disposable Flex chromatography columns (Kontes)
  • 2.5 × 7.5–cm TLC plates precoated with a 250‐µm layer of silica gel 60 F 254 (EMD)
  • High‐vacuum oil pump (Edwards)
  • Reflux condensers equipped with calcium drying tubes (Kontes)
  • Dry ice/acetone bath
  • 30‐ and 60‐mL sintered glass funnels (coarse porosity, Kontes)
  • High‐vacuum distillation system (Kontes)
  • Additional reagents and equipment for column chromatography ( appendix 3E ) and TLC ( appendix 3D )

Basic Protocol 2: Synthesis, Purification, and Characterization of Formamidoalkylated Alcohols

  Materials
  • 2‐(Methylamino)ethan‐1‐ol (Aldrich)
  • Ethyl formate (Aldrich)
  • 3‐(Methylamino)propan‐1‐ol (Koepke et al., )
  • Ethanolamine (Aldrich), freshly distilled
  • Methylene chloride (CH 2 Cl 2 ; Fisher)
  • Silica gel (60 Å, 230 to 400 mesh; Merck)
  • Methanol (Fisher)
  • Phosphomolybdic acid (Aldrich)
  • 25‐, 100‐, and 250‐mL round‐bottom flasks (Kontes)
  • Reflux condensers equipped with calcium drying tubes (Kontes)
  • Rotary evaporator (Büchi) connected to a vacuum pump (KNF)
  • High‐vacuum distillation system (Kontes)
  • 2.5 × 20–cm disposable Flex chromatography columns (Kontes)
  • 2.5 × 7.5–cm TLC plates precoated with a 250‐µm layer of silica gel 60 F 254 (EMD)
  • Additional reagents and equipment for column chromatography ( appendix 3E ) and TLC ( appendix 3D )

Basic Protocol 3: Synthesis, Purification, and Characterization of Hydroxyalkylated Phosphoramidate and Phosphoramidothioate Derivatives

  Materials
  • 2‐[(4,4′‐Dimethoxytrityl)oxy]ethan‐1‐ol ( S.16 ; Koizumi et al., ; Ferreira et al., )
  • 3‐[(4,4′‐Dimethoxytrityl)oxy]‐propan‐1‐ol ( S.17 ; Bannwarth et al., )
  • 4‐[(4,4′‐Dimethoxytrityl)oxy]butan‐1‐ol ( S.18 ; Greenberg et al., ; Chang et al., )
  • Dry N ,N ‐diisopropylethylamine (DIPEA; Aldrich)
  • Methylene chloride (CH 2 Cl 2 ; Fisher) and anhydrous methylene chloride (Acros)
  • 2‐Cyanoethyl (N,N ‐diisopropyl)phosphoramidochloridite (Aldrich)
  • 2‐Cyanoethyl (N ,N ‐diethyl)phosphoramidochloridite (Aldrich)
  • 2‐Cyanoethyl (N,N ‐morpholinyl)phosphoramidochloridite (Aldrich)
  • Dry argon gas cylinder (Matheson)
  • 5.5 M tert ‐Butyl hydroperoxide in decane (Aldrich)
  • Elemental sulfur (Aldrich)
  • Anhydrous sodium sulfate (Fisher)
  • Acetic acid (AcOH; Acros)
  • Chloroform (CHCl 3 ; Fisher)
  • Silica gel (60 Å, 230 to 400 mesh; Merck)
  • Methanol (Fisher)
  • Phosphomolybdic acid (Aldrich)
  • 100‐ and 250‐mL round‐bottom flasks (Kontes) with rubber septa (Aldrich)
  • Syringes (BD)
  • 100‐mL separatory funnels (Kontes)
  • 100‐mL Erlenmeyer flasks (Kimax)
  • 60‐mm funnels (Nalgene)
  • Whatman no. 1 filter paper
  • Rotary evaporator (Büchi) connected to a vacuum pump (KNF)
  • 2.5 × 20–cm disposable Flex chromatography columns (Kontes)
  • 2.5 × 7.5–cm TLC plates precoated with a 250‐µm layer of silica gel 60 F 254 (EMD)
  • Additional reagents and equipment for column chromatography ( appendix 3E ) and TLC ( appendix 3D )

Basic Protocol 4: Synthesis, Purification, and Characterization of Alkylthioalkylated, Formamidoalkylated, Phosphoramidated, and Phosphoramidothioated Deoxyribonucleoside Phosphoramidite Derivatives

  Materials
  • Desired alcohol(s) for derivatization ( S.1 S.15 , S.19 S.25 ; see Basic Protocols protocol 11 , protocol 22 , and protocol 33 )
  • 5′‐O ‐(4,4′‐Dimethoxytrityl)‐3′‐O ‐bis(N ,N ‐diisopropylamino)phosphinyl‐2′‐ deoxythymidine ( S.26 ; unit 3.17 )
  • Dry argon gas cylinder (Matheson)
  • Anhydrous acetonitrile (MeCN, Glen Research)
  • 1H ‐Tetrazole (Glen Research), sublimed
  • Triethylamine (Et 3 N, Aldrich)
  • Benzene (Aldrich) and anhydrous benzene (Acros)
  • Silica gel (60 Å, 230 to 400 mesh; EMD)
  • Hexane (Fisher)
  • 25‐mL round‐bottom flask (Kontes), flame dried
  • 100‐ and 250‐mL round‐bottom flasks (Kontes)
  • Rubber septa for 14/20‐ and 24/40‐glass joints (Aldrich)
  • 10‐mL plastic syringes (BD)
  • Rotary evaporator (Büchi) connected to a vacuum pump (KNF)
  • 2.5 × 20–cm disposable Flex chromatography columns (Kontes)
  • 2.5 × 7.5–cm TLC plates precoated with a 250‐µm layer of silica gel 60 F 254 (EMD)
  • Dry ice/acetone bath
  • High‐vacuum oil pump (Edwards)
  • Additional reagents and equipment for column chromatography ( appendix 3E ) and TLC ( appendix 3D )

Basic Protocol 5: Solid‐Phase Synthesis of Thermosensitive Dinucleoside Phosphorothioate Triesters and Their Conversion to Phosphorothioate Diesters Under Thermolytic Conditions

  Materials
  • Deblocking solution: 3% trichloroacetic acid (TCA) in dichloromethane (Glen Research)
  • Long‐chain alkylamine controlled‐pore glass (CPG) support loaded with 5′‐O ‐(4,4′‐dimethoxytrityl)‐2′‐deoxythymidine covalently bound through a 3′‐O ‐hemisuccinate linker (Glen Research)
  • Acetonitrile (MeCN; Acros)
  • Dry argon gas cylinder (Matheson)
  • 0.45 M 1H ‐tetrazole in MeCN (Glen Research)
  • 5′‐O ‐DMTr‐2′‐deoxythymidine phosphoramidites ( S.27 S.48 ; see protocol 4 )
  • 3H ‐1,2‐Benzodithiol‐3‐one‐1,1‐dioxide (Glen Research)
  • Methylamine gas lecture bottle (Aldrich)
  • 2 M triethylammonium acetate (TEAA) buffer, pH 7.0 (Applied Biosystems)
  • Phosphate‐buffered saline (PBS, pH 7.4; Gibco)
  • 1‐, 3‐, and 10‐mL Luer‐tip syringes (B‐D)
  • Empty synthesis columns (Glen Research)
  • 20‐G hypodermic needles with Luer‐tip adapters
  • 250‐mL vacuum Erlenmeyer flask with rubber septa
  • Water aspirator or in‐house vacuum line
  • Tygon tubing (Fisher)
  • 4‐mL screw‐cap glass vials (Wheaton), one with rubber septum
  • 1‐mL gas‐tight glass syringe (Hamilton)
  • 250‐mL stainless steel pressure vessel (Parr Instruments)
  • 5‐µm Supelcosil LC‐18S HPLC column (25 cm × 4.6 mm, Supelco)
  • 37°C water bath
  • 90°C Heat block (VWR)

Basic Protocol 6: Automated Solid‐Phase Synthesis of a Heat‐Sensitive DNA Prodrug Model and Its Selective Thermolytic Deprotection

  Materials
  • Monomers and reagents for oligonucleotide synthesis:
    • 5′‐O ‐(4,4′‐Dimethoxytrityl)‐3′‐O ‐(2‐cyanoethoxy)‐(N ,N ‐ diisopropylamino)phosphinyl‐2′‐deoxythymidine (Glen Research)
    • N 2 ‐Isobutyryl‐5′‐O ‐(4,4′‐dimethoxytrityl)‐3′‐O ‐(2‐cyanoethoxy)‐(N ,N ‐ diisopropylamino)phosphinyl‐2′‐deoxyguanosine (Glen Research)
    • N 4 ‐Benzoyl‐5′‐O ‐(4,4′‐dimethoxytrityl)‐3′‐O ‐(2‐methoxyethoxy)‐(N ,N ‐ diisopropylamino)phosphinyl‐2′‐deoxycytidine (prepared as described for S.33 in protocol 4 ; also see Ausín et al., )
    • N 2 ‐Isobutyryl‐5′‐O ‐(4,4′‐dimethoxytrityl)‐3′‐O ‐[2‐(N ‐formyl‐N ‐methylamino)ethoxy]‐(N ,N ‐ diisopropylamino)phosphinyl‐2′‐deoxyguanosine (prepared as described for S.27 in protocol 4 ; also see Ausín et al., )
    • 0.45 M 1H ‐tetrazole in MeCN (Glen Research)
    • 3H ‐1,2‐Benzodithiol‐3‐one‐1,1‐dioxide (Glen Research)
    • Cap A solution: acetic anhydride in tetrahydrofuran/pyridine (Glen Research)
    • Cap B solution: 1‐methylimidazole in tetrahydrofuran (Glen Research)
    • Deblocking solution: 3% trichloroacetic acid in CH 2 Cl 2 (Glen Research)
  • Acetonitrile (MeCN, Acros)
  • Anhydrous ammonia cylinder (Aldrich)
  • 2 M triethylammonium acetate (TEAA) buffer, pH 7.0 (Applied Biosystems)
  • Acetic acid (AcOH)
  • Phosphate‐buffered saline (PBS, pH 7.4, Gibco)
  • Loading buffer: 1:4 (v/v) 10× TBE, pH 8.3 ( appendix 2A ) in formamide, containing 2 mg/mL bromphenol blue
  • Stains‐all (Aldrich)
  • Formamide (Fisher)
  • Automated DNA/RNA synthesizer (Applied Biosystems Model 392)
  • Synthesis columns with long‐chain alkylamine controlled‐pore glass (LCAA‐CPG, 500 Å) support loaded with 5′‐O ‐(4,4′‐dimethoxytrityl)‐2′‐deoxythymidine covalently bound through a 3′‐O ‐hemisuccinate linker (Glen Research)
  • 250‐mL stainless steel pressure vessel (Parr Instruments)
  • High‐vacuum oil pump (Edwards)
  • Water aspirator or in‐house vacuum line
  • 1‐mL plastic syringes (BD)
  • 5‐µm Supelcosil LC‐18S reversed‐phase HPLC column (25 cm × 4.6 mm; Supelco)
  • 4‐mL screw‐capped glass vials (Wheaton), one with rubber septum
  • Heating block at 90°C (VWR)
  • 1.5‐mL microcentrifuge tubes
  • UV/Vis spectrophotometer equipped with a Peltier temperature control system (Hewlett‐Packard)
  • 1‐mL quartz cuvettes with Teflon caps
  • Additional reagents and equipment for automated DNA synthesis ( appendix 3C ), RP‐HPLC (unit 10.5 ), and PAGE (unit 10.4 & appendix 3B )
NOTE: All ancillary reagents required for automated oligonucleotide synthesis were purchased from Glen Research and used as recommended by the manufacturer.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library

Figures

  •   Figure Figure 4.42.1 Synthesis of 5‐(methylthio)pentan‐1‐ol (S.5 ) and 5‐(isopropylthio)pentan‐1‐ol (S.6 ) from methyl 5‐chlorovalerate. See Brown et al. () for the preparation of (CH3 )2 CHSNa. Reprinted from Ausín et al. () with permission from Elsevier.
    View Image
  •   Figure Figure 4.42.2 Synthesis of 4‐(trifluoromethylthio)butan‐1‐ol (S.7 ) from the reaction of 4‐mercaptobutan‐1‐ol with 1‐trifluoromethyl‐1,3‐dihydro‐3,3‐dimethyl‐1,2‐benziodoxole. Reprinted from Ausín et al. () with permission from Elsevier.
    View Image
  •   Figure Figure 4.42.3 Preparation of 4‐(methoxymethylthio)butan‐1‐ol (S.8 ) from 4‐mercaptobutan‐1‐ol. Reprinted from Ausín et al. () with permission from Elsevier.
    View Image
  •   Figure Figure 4.42.4 Preparation of 2‐(2‐methylthioethoxy)ethanol (S.9 ) from 2‐(methylthio)ethanol (S.2 ). Reprinted from Ausín et al. () with permission from Elsevier.
    View Image
  •   Figure Figure 4.42.5 Synthesis of 3‐(methylthiomethoxy)propan‐1‐ol (S.10 ) and 2‐(methylthiomethoxy)ethanol (S.11 ) from methythiomethyl acetate. Reprinted from Ausín et al. () with permission from Elsevier.
    View Image
  •   Figure Figure 4.42.6 Preparation of 3‐( N ‐formyl‐ N ‐methylamino)propan‐1‐ol (S.13 ) from 3‐aminopropan‐1‐ol. Reprinted from Ausín et al. () with permission from Elsevier.
    View Image
  •   Figure Figure 4.42.7 General synthesis of the hydroxyalkylated phosphoramidate (S.19 ) and phosphoramidothioate derivatives (S.20S.25 ). Abbreviations: DMTr, 4,4′‐dimethoxytrityl; Et, ethyl; i ‐Pr, isopropyl; N(CH2 CH2 )2 O, morpholinyl. Adapted from Grajkowski et al. (). Reproduced by permission of the Royal Society of Chemistry (RSC) for the Centre National de la Recherche Scientifique (CNRS) and the RSC.
    View Image
  •   Figure Figure 4.42.8 Preparation of the deoxyribonucleoside phosphoramidites S.27S.48 . Abbreviations: CE, 2‐cyanoethyl; DMTr, 4,4′‐dimethoxytrityl; Et, ethyl; i ‐Pr, isopropyl; Thy, thymin‐1‐yl; N(CH2 CH2 )2 O, morpholinyl. Adapted from Ausín et al. () with permission from Elsevier, and from Grajkowski et al. () with permission from the Royal Society of Chemistry.
    View Image
  •   Figure Figure 4.42.9 Solid‐phase synthesis of dinucleoside phosphorothioate triesters S.50S.71 and removal of the thiophosphate protecting groups under thermolytic conditions. Abbreviations: CPG, long‐chain alkylamine controlled‐pore glass; DMTr, 4,4′‐dimethoxytrityl; R, thermosensitive thiophosphate‐protecting groups derived from S.1S.15 and S.19S.25 ; Thy, thymin‐1‐yl. Adapted from Ausín et al. () with permission from Elsevier, and from Grajkowski et al. () with permission from the Royal Society of Chemistry.
    View Image
  •   Figure Figure 4.42.10 PAGE analysis of the thermolytic deprotection of DNA oligonucleotide S.72 under denaturing conditions. Left lane: RP‐HPLC‐purified control DNA S.73 . Right lane: RP‐HPLC‐purified DNA S.72 heated in PBS (pH 7.4) for 3 hr at 90°C. Oligonucleotides were visualized as blue bands after staining with Stains‐All. Bromphenol blue was used as a marker and shows as a large band at the bottom of the gel in each lane. Reprinted from Ausín et al. () with permission from Elsevier.
    View Image
  •   Figure Figure 4.42.11 Relative solubility of DNA oligonucleotide S.72 upon thermal deprotection of the fma thiophosphate‐protecting groups. 100% relative solubility is defined as the maximum absorbance ( A max ) of the DNA sequence at 268 nm and 90°C. Thus, % relative solubility = ( A / A max ) × 100 for each time point. Reprinted from Ausìn et al. () with permission from Elsevier.
    View Image

Videos

Literature Cited

Literature Cited
   Ausín, C., Kauffman, J.S., Duff, R.J., Shivaprasad, S., and Beaucage, S.L. 2010. Assessment of heat‐sensitive thiophosphate protecting group in the development of thermolytic DNA oligonucleotide prodrugs. Tetrahedron 66:68‐79.
   Bannwarth, W., Dorn, A., Iaiza, P., and Pannekouke, X. 1994. Short optimally capped duplex DNA as conformationally restricted analog of B‐DNA. Helv. Chim. Acta 77:182‐193.
   Barber, I., Rayner, B., and Imbach, J.‐L. 1995. The prooligonucleotide approach. I: Esterase‐mediated reversibility of dithymidine‐S‐alkyl‐phosphorothiolates to dithymidine phosphorothioates. Bioorg. Med. Chem. Lett. 5:563‐568.
   Boal, J.H., Wilk, A., Harindranath, N., Max, E.E., Kempe, T., and Beaucage, S.L. 1996. Cleavage of oligodeoxyribonucleotides from controlled pore glass supports and their rapid deprotection by gaseous amines. Nucleic Acids Res. 24:3115‐3117.
   Bologna, J.‐C., Vivès, E., Imbach, J.‐L., and Morvan, F. 2002. Uptake and quantification of intracellular concentration of lipophilic pro‐oligonucleotides in HeLa cells. Antisense Nucleic Acid Drug Dev. 12:33‐41.
   Bongartz, J.‐P., Aubertin, A.‐M., Milhaud, P.G., and Lebleu, B. 1994. Improved biological activity of antisense oligonucleotides conjugated to a fusogenic peptide. Nucleic Acids Res. 22:4681‐4688.
   Brown, E.D., Iqbal, S.M., and Owen, L.N. 1966. The reductive fission of methyl sulphides, 1,3‐dithiolans, and a 1,3‐oxathiolan by sodium in liquid ammonia. J. Chem. Soc. C 1966:415‐419.
   Chang, Y.‐C., Herath, J., Wang, T.‐H.H., and Chow, C.‐S. 2008. Synthesis and solution conformation studies of 3‐substituted uridine and pseudouridine derivatives. Bioorg. Chem. Med. 16:2676‐2686.
   Deslongchamps, P., Cheriyan, U.O., and Taillefer, R.J. 1979. Hydrolysis of cyclic unsymmetrical anti imidate salts. New evidence for stereoelectronic control. Can. J. Chem. 57:3262‐3271.
   Ferreira, F., Meyer, A., Vasseur, J.‐J., and Morvan, F. 2005. Universal solid supports for the synthesis of oligonucleotides via a transesterification of H‐phosphonate diester linkage. J. Org. Chem. 70:9198‐9206.
   Grajkowski, A., Wilk, A., Chmielewski, M.K., Phillips, L.R., and Beaucage, S.L. 2001. The 2‐(N‐formyl‐N‐methyl) aminoethyl group as a potential phosphate/thiophosphate protecting group in solid‐phase oligodeoxyribonucleotide synthesis. Org. Lett. 3:1287‐1290.
   Grajkowski, A., Pedras‐Vasconcelos, J., Wang, V., Ausín, C., Hess, S., Verthelyi, D., and Beaucage, S.L. 2005. Thermolytic CpG‐containing DNA oligonucleotides as potential immunotherapeutic prodrugs. Nucleic Acids Res. 33:3550‐3560.
   Grajkowski, A., Cieślak, J., Kauffman, J.S., Duff, R.J., Norris, S., Freedberg, D.I., and Beaucage, S.L. 2008. Thermolytic release of covalently linked DNA oligonucleotides and their conjugates from controlled‐pore glass at near neutral pH. Bioconjug. Chem. 19:1696‐1706.
   Grajkowski, A., Cieślak, J., Gapeev, A., and Beaucage, S.L. 2010. Hydroxylated phosphoramidate, phosphoramidothioate and phosphorodiamidothioate derivatives as thiophosphate protecting groups in the development of thermolytic DNA prodrugs. New J. Chem. 34:880‐887.
   Greenberg, M.M., Matray, T.J., Kahl, J.D., Yoo, D.J., and McMinn, D.L. 1998. Optimization and mechanistic analysis of oligonucleotide cleavage from palladium‐labile solid‐phase synthesis supports. J. Org. Chem. 63:4062‐4068.
   Guan, J., Kyle, D.E., Gerena, L., Zhang, Q., Milhous, W.K., and Lin, A.J. 2002. Design, synthesis, and evaluation of new chemosensitizers in multi‐drug‐resistant Plasmodium falciparum. J. Med. Chem. 45:2741‐2748.
   Hemmi, H., Takeuchi, O., Kawai, T., Kaisho, T., Sato, S., Sanjo, H., Matsumoto, M., Hoshino, K., Wagner, H., Takeda, K., and Akira, S. 2000. A Toll‐like receptor recognizes bacterial DNA. Nature 408:740‐745.
   Iyer, R.P., Phillips, L.R., Egan, W., Regan, J.B., and Beaucage, S.L. 1990. The automated synthesis of sulfur‐containing oligodeoxyribonucleotides using 3H‐1,2‐benzodithiol‐3‐one‐1,1‐dioxide as a sulfur‐transfer reagent. J. Org. Chem. 55:4693‐4699.
   Iyer, R.P., Yu, D., and Agrawal, S. 1994. Stereospecific bio‐reversibility of dinucleoside S‐alkyl phosphorothiolates to dinucleoside phosphorothioates. Bioorg. Med. Chem. Lett. 4:2471‐2476.
   Iyer, R.P., Ho, N.H., Yu, D., and Agrawal, S. 1997. Bioreversible oligonucleotide conjugates by site‐specific derivatization. Bioorg. Med. Chem. Lett. 7:871‐876.
   Jones, S.S., Reese, C.B., and Sibanda, S. 1981. The 2‐(methylthiomethoxy)ethoxycarbonyl [mtmec] protecting group. Tetrahedron Lett. 22:1933‐1936.
   Kieltsch, I., Eisenberger, P., and Togni, A. 2007. Mild electrophilic trifluoromethylation of carbon‐ and sulfur‐centered nucleophiles by a hypervalent iodine(III)‐CF3 reagent. Angew. Chem. Int. Ed. 46:754‐757.
   Klinman, D.M., Takeshita, F., Gursel, I., Leifer, C., Ishii, K.J., Verthelyi, D., and Gursel, M. 2002. CpG DNA: Recognition by and activation of monocytes. Microbes Infect. 4:897‐901.
   Koepke, S.R., Kupper, R., and Michejda, C.J. 1979. Unusually facile solvolysis of primary tosylates. A case for participation by the N‐nitroso group. J. Org. Chem. 44:2718‐2722.
   Koizumi, M., Koga, R., Hotoda, H., Momota, K., Ohmine, T., Furukawa, H., Agatsuma, T., Nishigaki, T., Abe, K., Kosaka, T., Tsutsumi, S., Sone, J., Kaneko, M., Kimura, S., and Shimada, K. 1997. Biologically active oligodeoxyribonucleotides—IX. Synthesis and anti‐HIV‐1 activity of hexadeoxyribonucleotides, TGGGAG, bearing 3′‐ and 5′‐end‐modification. Bioorg. Med. Chem. 5:2235‐2243.
   Krieg, A.M. 2002. CpG motifs in bacterial DNA and their immune effects. Annu. Rev. Immunol. 20:709‐760.
   Poijärvi, P., Oivanen, M., and Lönnberg, H. 2004. Towards oligonucleotide pro‐drugs: 2,2‐Bis(ethoxycarbonyl) and 2‐(alkylaminocarbonyl)‐2‐cyano substituted 3‐(pivaloyloxy)propyl groups as biodegradable protecting groups for internucleosidic phosphoromonothioate linkages. Lett. Org. Chem. 1:183‐188.
   Yakubov, L.A., Deeva, E.A., Zarytova, V.F., Ivanova, E.M, Ryte, A.S., Yurchenko, L.V., and Vlassov, V.V. 1989. Mechanism of oligonucleotide uptake by cells: Involvement of specific receptors? Proc. Natl. Acad. Sci. U.S.A. 86:6454‐6458.
GO TO THE FULL PROTOCOL:
PDF or HTML at Wiley Online Library
 
ad image
提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序