• 我要登录|
  • 免费注册
    |
  • 我的丁香通
    • 企业机构:
    • 成为企业机构
    • 个人用户:
    • 个人中心
  • 移动端
    移动端
丁香通 logo丁香实验_LOGO
搜实验

    大家都在搜

      大家都在搜

        0 人通过求购买到了急需的产品
        免费发布求购
        发布求购
        点赞
        收藏
        wx-share
        分享

        Using Recursive Partitioning Analysis to Evaluate Compound Selection Methods

        互联网

        868
        The design and analysis of a screening set for high throughput screening is complex. We examine three statistical strategies for compound selection, random, clustering, and space-filling. We examine two types of chemical descriptors, BCUTs and principal components of Dragon Constitutional descriptors. Based on the predictive power of multiple tree recursive partitioning, we reached the following tentative conclusions. Random designs appear to be as good as clustering and space-filling designs. For analysis, BCUTs appear to be better than principal components scores based upon Constitutional Descriptors. We confirm previous results that model-based selection of compounds can lead to improved screening hit rates.
        ad image
        提问
        扫一扫
        丁香实验小程序二维码
        实验小助手
        丁香实验公众号二维码
        扫码领资料
        反馈
        TOP
        打开小程序