丁香实验_LOGO
登录
提问
我要登录
|免费注册

化学生物学实验技术

丁香实验推荐阅读
脂肪酸的氧化分解

佚名   脂肪酸在有充足氧供给的情况下,可氧化分解为CO2和H2O,释放大量能量,因此脂肪酸是机体主要能量来源之一。肝和肌肉是进行脂肪酸氧化最活跃的组织,其最主要的氧化形式是β-氧化。 相关新闻 ...

丁香实验推荐阅读
脂肪酸的β-氧化过程

佚名   此过程可分为活化,转移,β-氧化共三个阶段。  1.脂肪酸的活化  和葡萄糖一样,脂肪酸参加代谢前也先要活化。其活化形式是硫酯:脂肪酰CoA,催化脂肪酸活化的酶是脂酰CoA合成酶(acyl CoA synthetase)。�     活化后生成的脂酰CoA极性增强,易溶于水;分子中有高能键、性质活泼;是酶的特异底物,与酶的亲和力大,因此更容易参加反应。  脂酰 ...

丁香实验推荐阅读
脂肪酸β-氧化的生理意义

佚名   脂肪酸β-氧化是体内脂肪酸分解的主要途径,脂肪酸氧化可以供应机体所需要的大量能量,以十八个碳原子的饱和脂肪酸硬脂酸为例,其β-氧化的总反应为:  CH3(CH2)15COSCoA+8NAD+~undefinedCoASH+8H2O――→9CH3COSCoA+8FADH2+8NADH+8H+��  8分子FADH2提供8×2=16分子ATP,8分子NADH+H+提供8×3=24 ...

丁香实验推荐阅读
脂肪酸的特殊氧化形式

佚名   1.丙酸的氧化:人体内和膳食中含极少量的奇数碳原子脂肪酸,经过β-氧化除生成乙酰CoA外还生成一分子丙酰CoA,某些氨基酸如异亮氨酸、蛋氨酸和苏氨酸的分解代谢过程中有丙酰CoA生成,胆汁酸生成过程中亦产生丙酰CoA。丙酰CoA经过羧化反应和分子内重排,可转变生成琥珀酰CoA,可进一步氧化分解,也可经草酰乙酸异生成糖,反应过程见下图。  甲基丙二酰CoA变位酶的 ...

丁香实验推荐阅读
酮体的生成与利用

佚名   酮体(acetone bodies)是脂肪酸在肝脏进行正常分解代谢所生成的特殊中间产物,包括有乙酰乙酸(acetoacetic acid约占30%),β-羟丁酸(β�hydroxybutyric acid约占70%)和极少量的丙酮(acetone)。正常人血液中酮体含量极少(约为0.8?.0mg/dl0.2�2mM),这是人体利用脂肪氧化供能的正常现象。但在某 ...

丁香实验推荐阅读
脂肪酸的合成

佚名   人体内的脂肪酸大部分来源于食物,为外源性脂肪酸,在体内可通过改造加工被人体利用。同时机体还可以利用糖和蛋白转变为脂肪酸称为内源性脂肪酸,用于甘油三酯的生成,贮存能量。合成脂肪酸的主要器官是肝脏和哺乳期乳腺,另外脂肪组织、肾脏、小肠均可以合成脂肪酸,合成脂肪酸的直接原料是乙酰CoA,消耗ATP和NADPH,首先生成十六碳的软脂酸,经过加工生成人体各种脂肪酸,合成 ...

丁香实验推荐阅读
软脂酸的生成

佚名   脂肪酸的合成首先由乙酰CoA开始合成,产物是十六碳的饱和脂肪酸即软酯酸(palmitoleic acid)。  1.乙酰CoA的转移  乙酰CoA可由糖氧化分解或由脂肪酸、酮体和蛋白分解生成,生成乙酰CoA的反应均发生在线粒体中,而脂肪酸的合成部位是胞浆,因此乙酰CoA必须由线粒体转运至胞浆。但是乙酰CoA不能自由通过线粒体膜,需要通过一个称为柠檬酸�丙酮酸循 ...

丁香实验推荐阅读
其它脂肪酸的生成

佚名   人体内不仅有软脂酸,还有碳链长短不等的其它脂肪酸,也有各种不饱和脂肪酸,除营养必需脂肪酸依赖食物供应外,其它脂肪酸均可由软脂酸在细胞内加工改造而成。  1.碳链的延长和缩短  脂肪酸碳链的缩短在线粒体中经β-氧化完成,经过一次β-氧化循环就可以减少两个碳原子。  脂肪酸碳链的延长可在滑面内质网和线粒体中经脂肪酸延长酶体系催化完成。  �在内质网,软脂酸延长是以 ...

丁香实验推荐阅读
脂肪酸合成的调节

佚名   乙酰CoA羧化酶催化的反应是脂肪酸合成的限速步骤,很多因素都可影响此酶活性,从而使脂肪酸合成速度改变。脂肪酸合成过程中其他酶,如脂肪酸合成酶、柠檬酸裂解酶等亦可被调节。  1.代谢物的调节  在高脂膳食后,或因饥饿导致脂肪动员加强时,细胞内软脂酰CoA增多,可反馈抑制乙酰CoA羧化酶,从而抑制体内脂肪酸合成。而进食糖类,糖代谢加强时,由糖氧化及磷酸戊糖循环提供 ...

丁香实验推荐阅读
前列腺素、血栓素及白三烯

佚名   前列腺素(prostaglandin,PG),血栓素(thromboxane,TX)和白三烯(leukotrienesLT)均由花生四烯酸衍生而来。它们在细胞内生成后,可作为调节物对几乎所有的细胞代谢发挥调节作用,而且与炎症、过敏反应和心血管疾病等病理过程有关。  生物膜上的膜磷脂含有花生四烯酸,它可被磷脂酶A2水解,释放花生四烯酸。花生四烯酸可在前列腺素内过 ...

丁香实验推荐阅读
磷脂代谢

佚名   磷脂是一类含有磷酸的脂类,机体中主要含有两大类磷脂,由甘油构成的磷脂称为甘油磷脂(phosphoglyceride);由神经鞘氨醇构成的磷脂,称为鞘磷脂(sphingolipid)。其结构特点是:具有由磷酸相连的取代基团(含氨碱或醇类)构成的亲水头(hydrophilic head)和由脂肪酸链构成的疏水尾(hydrophobic tail)。在生物膜中磷脂的 ...

丁香实验推荐阅读
甘油磷脂的代谢

佚名   (一)甘油磷脂分类及生理功能  甘油磷脂是机体含量最多的一类磷脂,它除了构成生物膜外,还是胆汁和膜表面活性物质等的成分之一,并参与细胞膜对蛋白质的识别和信号传导。  甘油磷脂基本结构是磷脂酸和与磷酸相连的取代基团(X);  甘油磷脂由于取代基团不同又可以分为许多类,其中重要的有:  胆碱(choline)+磷脂酸→磷脂酰胆碱(phosphatidylcholi ...

丁香实验推荐阅读
鞘磷脂的代谢

佚名   鞘脂类(sphingolipid),组成特点是不含甘油而含鞘氨醇(sphingosine),其基本结构是:  按照取代基团X的不同可分为两种  X为磷酸胆碱称为鞘磷脂(sphingmyelin)  X为糖基称为鞘糖脂(glycosphingolipid)  (一)鞘磷脂的合成  体内的组织均可合成鞘磷脂,以脑组织最为活跃,是构成神经组织膜的主要成分,合成在细胞 ...

丁香实验推荐阅读
肝胆固醇的来源及释放途径

佚名   胆固醇是体内最丰富的固醇类化合物,它既作为细胞生物膜的构成成分,又是类固醇类激素、胆汁酸及维生素D的前体物质。因此对于大多数组织来说,保证胆固醇的供给,维持其代谢平衡是十分重要的。胆固醇广泛存在于全身各组织中,其中约1/4分布在脑及神经组织中,占脑组织总重量的2%左右。肝、肾及肠等内脏以及皮肤、脂肪组织亦含较多的胆固醇,每100g组织中约含200至500mg, ...

丁香实验推荐阅读
胆固醇的转化

佚名   胆固醇在体内不被彻底氧化分解为CO2和H2O,而经氧化和还原转变为其它含环戊烷多氢菲母核的化合物。其中大部分进一步参与体内代谢,或排出体外。  胆固醇在体内可作为细胞膜的重要成分。此外,它还可以转变为多种具有重要生理作用的物质,在肾上腺皮质可以转变成肾上腺皮质激素;在性腺可以转变为性激素,如雄激素、雌激素和孕激素(progestogen);在皮肤,胆固醇可被氧 ...

丁香实验推荐阅读
生物氧化概述

佚名   体内大部分物质都可进行氧化反应,在生物体内进行的氧化反应与体外氧化反应有许多共同之处:它们都遵循氧化反应的一般规律,常见的氧化方式有脱电子、脱氢和加氧等类型;最终氧化分解产物是CO2和H2O,同时释放能量。但是生物氧化(Biological oxidation)反应又有其特点:①体外氧化反应主要以热能形式释放能量;而生物氧化主要以生成ATP方式释放能量,为生物 ...

丁香实验推荐阅读
生物氧化酶类

佚名   体内催化氧化反应的酶有许多种,按照其催化氧化反应方式不同可分为三大类。  (一)脱氢氧化酶类  这一类中依据其反应受氢体或氧化产物不同,又可以分为三种。  1.氧化酶类(oxidases)  氧化酶直接作用于底物,以氧作为受氢体或受电子体,生成产物是水。氧化酶均为结合蛋白质,辅基常含有Cu2+,如细胞色素氧化酶、酚氧化酶、抗坏血酸氧化酶等。抗坏血酸氧化酶可催化 ...

丁香实验推荐阅读
生物氧化的基本概念

佚名   机体内进行的脱氢,加氧等氧化反应总称为生物氧化,按照生理意义不同可分为两大类,一类主要是将代谢物或药物和毒物等通过氧化反应进行生物转化,这类反应不伴有ATP的生成;另一类是糖、脂肪和蛋白质等营养物质通过氧化反应进行分解,生成H2O和CO2,同时伴有ATP生物能的生成,这类反应进行过程中细胞要摄取O2,释放CO2故又形象地称之为细胞呼吸(cellular res ...

丁香实验推荐阅读
呼吸链

佚名   呼吸链(respiratory chain)是由一系列的递氢体(hydrogen transfer)和递电子体(eletron transfer)按一定的顺序排列所组成的连续反应体系,它将代谢物脱下的成对氢原子交给氧生成水,同时有ATP生成。实际上呼吸链的作用代表着线粒体最基本的功能,呼吸链中的递氢体和递电子体就是能传递氢原子或电子的载体,由于氢原子可以看作是 ...

丁香实验推荐阅读
呼吸链的组成

佚名   构成呼吸链的递氢体和递电子体主要分为以下五类:  (一)尼克酰胺腺嘌呤二核苷酸(NAD+)或称辅酶I(CoI)。  为体内很多脱氢酶的辅酶,是连接作用物与呼吸链的重要环节,分子中除含尼克酰胺(维生素PP)外,还含有核糖、磷酸及一分子腺苷酸(AMP),其结构如下:  NAD+的主要功能是接受从代谢物上脱下的2H(2H++2e),然后传给另一传递体黄素蛋白。  在 ...

提问
扫一扫
丁香实验小程序二维码
实验小助手
丁香实验公众号二维码
扫码领资料
反馈
TOP
打开小程序