网络 第四章 细胞因子及其受体 细胞因子(cytokine)是指主要由免疫细胞分泌的、能调节细胞功能的小分子多肽。在免疫应答过程中,细胞因子对于细胞间相互作用、细胞的生长和分化有重要调节作用。80年代以来,由于基因工程、细胞工程研究的飞速发展,不仅克隆了早先发现的生物活性肽的cDNA,而且发现了许多新的细胞因子,并对各种细胞因子产生来源、分了子结构和基 ...
网络 二、TCR基因的重排 T细胞在胸腺中发育成熟过程中,TCR基因按照一定的顺序发生重排。TCR基因的重排顺序和表达与免疫球蛋白基因的重排和表达十分相似。在基因组中的识别序列包括了一个保守的七聚体和九聚体,七聚体与九聚体之间含有一个不保守的12碱基对或23碱基对间隔序列(spacer sequence)。 TCRβ链基因座的重排要先于α ...
网络 第三节 T细胞受体基因 编码T细胞受体(T cell receptorTCR)α、β、γ和δ链的基因定位于不同的染色体(表3-6)。人和小鼠δ基因都位于α基因的复合体中,均位于14号染色体;人TCRβ和γ链基因分别位于第7对染色体的长臂和短臂,小鼠β和γ链基因则分别位于第6和13号染色体。 表3-6 TCR多肽链基因定位 ...
网络 三、免疫球蛋白基因表达的调节 (一)核因子对Ig基因转录的调节作用 Ig基因转录活性是由两个顺式作用元件(cis-acting elements)即启动子(promoterP)和增强子(enhancerE)来调节。而启动子和增强子的功能又由反式作用的核因子(trans-acting nuclear factor)所控制。这些核因子也 ...
网络 四、免疫球蛋白的多样性 机体对外界环境中众多抗原刺激可产生相应的特异性抗体,有人推算抗体的多样性在107以上,这种抗体多样性主要是由遗传控制的。引起免疫球蛋白多样性的原因主要有以下几个方面。 1.胚系中众多的V、D、J基因片段 胚系(germ line)中未重排的(unrearranged) DNA有众多的V基因片段以及一定数量的D ...
网络 二、Ig轻链基因的结构和重排 在Ig重链基因重排后,轻链的可变区基因片段随之发生重排,V与J基因片段并列在一起。κ轻链基因先发生重排,如果κ基因重排无效,随即发生λ基因的重排。 (一)κ链基因的结构和重排 在小鼠,Vκ基因片段约有250个,间隔距离平均为10~12kb;Jκ有5个,其中4个有功能:Cκ只有1个。在人类,Vκ ...
网络 第二节 免疫球蛋白基因的结构和多样性 表3-2 免疫球蛋白基因定位 编码多肽链 基因符号 (人) 基因定位(染色体) 人 小鼠 κ轻链 IGK 2p11 6 λ轻链 IGL 22q11 16 ...
网络 三、CD、粘附分子与Ig超家族的关系 免疫分子的命名根据不同的角度往往有不同的归类和命名,图3-3归纳了人白细胞分化抗原(CD)、粘附分子(AM)、免疫球蛋白超家族(IGSF)、细胞因子受体(CKR)、补体受体(CR)以及主要组织相容性复合体抗原(MHC)等免疫分子命名的相互关系。 (1)A表示CD命名范围中的粘附分子,如CD49a ...
网络 二、Ig超家族的特点 (一)Ig超家族的结构特点 Ig超家族成员均含有1~7个Ig样结构域,每个Ig样结构域约含70~110个氨基酸残基。其二级结构是两个各含3~5个反平行β折叠股所形成的β片层(anti-parallel β-pleated sheet)平面,每个反平行β折叠股由5~10个氨基酸残基组成,β片层内侧的疏水性氨基酸起 ...
网络 第三章 免疫球蛋白超家族 免疫球蛋白基因的研究近年来获得重大突破。日本学者利根川进(Tonegawa)因在免疫球蛋白基因结构研究有突出贡献而获得1987年诺贝尔医学和生理学奖。应用X结晶衍射分析、DNA序列分析和园双色等技术研究表明,许多细胞膜表面分子和机体某些蛋白分子多肽折叠方式与Lg相似,在氨基酸组成上与免疫球蛋白可变区(V区)或/和恒定区( ...
网络 二、C4结合蛋白 C4结合蛋白(C4bp)是一种含量丰富的可溶性血清糖蛋白,分子量为550kDa,1977年由Ferreira等所报道。其分子结构模式现多以Dahlback等(1983)描述的“蜘蛛样”(spiderlike)结构来分析其结构及功能。C4bp由8个亚单位组成,电镜下观察形似蜘蛛,其中有7条分子量相同(均为70kDa)的长链(α ...
网络 第二节 补体调节分子的结构及功能 补体系统的激活为一种级联反应,但受到多种调节分子的严格控制,其反应的程度和单一成分的反应都是在生物反馈近代制下而进行的,从而限制了活化的扩大化,以维持补体水平的平衡。调节作用包括两个方面,即自身衷变失活及一些抑制物的灭活作用。前者指已活化的补体分子均不稳定,如不及时与靶细胞膜结合即迅速衰变失活;后者是通过抑制物的 ...
网络 十一、P因子 P因子又称备解素(properdin),是替代途径中除C3以外最先发现的一种血浆蛋白。现已探明,P因子以聚合体形式而存在:即三聚体(54%)、二聚体(26%)和四聚体(20%)都有,但特异活性的顺序依次为:四聚体三聚体二聚体。P因子为由4条相同的肽链(分子量各55kDa)组成的四聚体分子,链间以非共价键相连接,分子量为220kD ...
网络 十 、D因子 D因子是启动替代途径激活的重要成分,为由222个氨基酸残基组成的单链丝氨酸蛋白酶,分子量仅25kDa。D因子在血清中的浓度很低(1-2μg/ml),主要以活化形式而存在。但可能还有一种以酶原形式而存在的由239个氨基酸残基组成的D因子。具有活性的D因子(D)可能在第234-235位的精氨酸-赖氨酸键处将B因子裂解为Ba和Bb两个 ...
网络 九、B因子 B因子(factor BBf)替代激活途径中的重要成分,由Blum于1959年首先发现。B因子为由733个氨基酸残基组成的单链糖蛋白(糖含量约7%),分子量93kDa。由于这些氨基酸的迂回折叠形成三个大小相近似的球形区。其中1个为Ba,其余两个呈哑铃状为Bb。Bb中靠近N端的一个球形区可同C3b结合,另一个球形区可能是催化区(图5 ...
网络 八、C9分子 C9是形成膜攻击复合体(MAC)的最后个分子,为一单链糖蛋白,分子量79kDa。经对cDNA推导的氨基酸序列分析发现,C9为一两性分子。C端37kDa由疏水性氨基酸组成称C9b,N端34kDa由亲水性氨基酸组成称C9a因此C9以其羧基端部分嵌入细胞膜的脂质双层中。而N端则为与c 5b-8相结合的结构域。C9具有自发聚合的作用,但 ...
网络 七、C8分子 C8是由α、β、γ三条肽链组成的三聚体糖蛋白,分子量为155kDa。其中α链和β链均为64kDaγ链为22kDa。α链和γ链间以二硫键共价结合,而α链与β链间则为非共价键结合(图5-10)。C8分子中也含有TSP-1和LDL受体结构功能域。在C8α和C8β多肽链的中央(157-501个氨基酸残基间),几科不含半胱氨酸残基,为与细 ...
网络 六、C6和C7 C6和C7有许多相似之处,均为单链糖蛋白,且分子量也相近分别为128kDa和121kDa。编码C6和C7分子的基因可能由共同的祖基因进化而来。C6和C7在氨基酸水平上有33.5%的同源性。近几年来,对C6的结构及功能进行了较深入的研究,由cDNA序列推导成熟C6的全部多肽链含有913个氨基残基,前面还有21个独特氨基酸残基组成 ...
网络 五、C5分子 C5是形成膜攻击复合体(MAC)的第1个补体分子。C5由以二硫键相连接的α、β链组成,分子量190kDa,其中α链为115kDa,β链为75kDa(图5-9)。C5与C3和C4的结构相类似,但没有链内硫酯键。靠近N端的第74-75位精氨酸一亮氨酸键为C5转化酶作用的部位。在C5转化酶的作用下,C5α链N末端裂解出一个分子量为1 ...
网络 四、C3分子 C3处于两条激活途径的汇合点,在补体系统活化过程中起着枢纽作用,并为替代途径激活的关键分子。C3的α、β两条肽链组成,之间以二硫键相连结,分子量为195kDa,其中α链为115kDa,β链为75kDa(图5-6)。其在血清中的含量高于其它补体分子,约为0.55-1.2mg/ml。同C4分子一样,C3分子的α链在半胱氨酸和谷氨酸残 ...