指判断子女与父母间是否有生物学的亲子关系。在人类社会往往有这样的情况,即知道母亲,而要鉴别父亲时,这种鉴别主要是利用遗传学原理。但是亲子鉴别只能肯定其不是,而不能作出更积极的肯定。通常用于亲子鉴别的遗传性状,都是通过简单的调查就可作到的。并且遗传方式也是清楚的,适合于浸润度完全的,其中血型(ABO型、 MN型、 Rh型等)用得最多,指纹、掌纹、人类学特征、染色体等也被作为辅助手段而应用。此外还可根 ...
传统的陶瓷,如:日用瓷、卫生瓷、建筑瓷等,主要是以天然硅酸盐矿物为原料,经过配料、成型、烧成等工艺而制成。这类陶瓷也称为硅酸盐陶瓷。随着科学技术的发展,陶瓷制品的原料发生了很大变化,从天然矿物原料发展到氧化物原料以及人工合成原料。性能上也有相应的变化,从普通陶瓷材料发展到具有各种特殊性能的功能陶瓷和结构陶瓷材料(我们称这些为特种陶瓷)。陶瓷材料化学键的特点是以离子键及共价键为主要结合力;工艺上主要 ...
生物材料已是大家熟知的内容,例如:用于制衣、皮带的动物皮革是生物材料;用于镶牙和制作隐形眼睛的材料,尽管不是生物制品,但是被用于生物体内,也可以归于生物材料。纳米生物材料也可以分为两类,一种是适合于生物体内应用的纳米材料,它本身即可以是具有生物活性的,也可以不具有生物活性,而仅仅易于被生物体接受,而不引起不良反应。另一类是利用生物分子的特性而发展的新型纳米材料,它们可能不再被用于生物体,而被用 ...
磁性瓷也叫铁氧体。它是由铁的氧化物与其它某些金属氧化物用制造陶瓷的工艺方法制成的非金属磁性材料。它的主要成分是Fe2O3,此外还有二价或一价的金属氧化物(如NiO,MnO,CuO,ZnO,SrO,BaO,PbO,Li2O等)或三价的稀土氧化物。50年代我国已开发出了钡铁氧体(BaFe12O19)和锶铁氧体(SrFe12O19),其化学性能和物理性能稳定,价格低廉,获得了极其广泛的应用。目前已出现一 ...
半导体由于禁带宽度较小,升温时(有时还可以借助于光、电和磁效应)价电子被激发,从满带进入空带,而在满带形成空穴,从而可以导电。利用纯固体晶体直接在某种势场作用下导电(可为电子导电,也可为空穴导电)的材料为本征半导体。这种电子激发称为本征激发。当纯材料中掺有极少量(例如,相对量在10-9左右)不同价态的异核原子时,会使电导率发生显著变化,即使半导体改性,便形成杂质半导体。如在Ⅳ价的Si,Ge中掺入Ⅴ ...
玻璃钢是由玻璃纤维与聚酯类树脂复合而成的材料。玻璃是非常易碎的脆性材料,但如果将玻璃熔化并以极快的速度拉成细丝,这种玻璃纤维异常柔软,可以纺织。玻璃纤维的强度很高,比天然纤维或化学纤维高出5~30倍。在制造玻璃钢时,可将直径为5~10μm的玻璃纤维制成纱、带材或织物加到树脂中,也可以把玻璃纤维切成短纤维加入基体。玻璃钢具有优良的性能,它的强度高、质量轻、耐腐蚀、抗冲击、绝缘性好。增强体除了用普通玻 ...
树脂基复合材料的耐热性低,一般不超过300℃,且不导电,导热性也较差,这就限制了它们在某些条件下的使用。而金属基复合材料恰好在这些方面具有优势,成为各国竞相发展的新材料。金属基复合材料一般都在高温下成形,因此要求作为增强材料的耐热性要高。在纤维增强金属中不能选用耐热性低的玻璃纤维和有机纤维,而主要使用硼纤维、碳纤维、碳化硅纤维和氧化铝纤维。基体金属用得较多的是铝、镁、钛及某些合金。碳纤维是金属基复 ...
随着对高温高强材料的要求愈来愈高,人们转向研制陶瓷基复合材料。基体陶瓷大体有Al2O3,MgO·Al2O3,SiO2,Al2O3·ZrO2,Si3N4,SiC等。增强材料有碳纤维、碳化硅纤维和碳化硅晶须。所谓晶须就是由晶体生长形成的针状短纤维。纤维增强陶瓷可以增加陶瓷的韧性,这是解决陶瓷脆性的途径之一。由纤维增强陶瓷做成的陶瓷瓦片,用粘接剂贴在航天飞机机身上,使航天飞机能安全地穿越大气层回到地球上 ...
高分子具有绝缘性,这是由它的结构所决定的,在前面已经讨论过。70年代人们合成了聚乙炔,发现它有导电性能。乙炔分子中碳与碳以叁键结合,单体经加聚聚合后得到聚乙炔,这是一种双键、单链间隔连接的线型高分子,分子中存在共轭π键体系,π电子可以在整个共轭体系中自由流动,因此可以导电。若将碘掺杂到聚乙炔中,导电率会大幅度提高。随聚乙炔后,又发现聚吡咯、聚噻吩、聚噻唑、聚苯硫醚等都具有导电性,导电高分子材料引起 ...
高分子材料应用于医学上已有40多年历史。由于某些合成高分子与人体器官组织的天然高分子有着极其相似的化学结构和物理性能,因此用高分子材料做成的人工器官具有很好的生物相容性,不会因与人体接触而产生排斥和其他作用。目前已知可用于制做人造器官的合成高分子材料有:尼龙、环氧树脂、聚乙烯、聚乙烯醇、聚甲醛、聚甲基丙烯酸甲酯、聚四氟乙烯、聚醋酸乙烯酯、硅橡胶、聚氨酯、聚碳酸酯等。高分子材料制造的人造器官,除了脑 ...
塑料制品已进入千家万户,垃圾中废弃的塑料也愈来愈多。由于这类合成高分子非常稳定,耐酸耐碱,不蛀不霉,把它们埋入地下,上百年也不会腐烂。因此废弃的塑料已经成为严重的公害,人们大声疾呼要消除“白色污染”。如果包装食品的塑料袋和泡沫塑料饭盒用可降解高分子材料来做,那末废弃的塑料将在一定条件下自行分解成为粉末。合成高分子的主链结合得十分牢固,要降解必须设法破坏、削弱主链的结合。目前已提出生物降解、化学降解 ...
号称“尿不湿”的纸尿片已进入而场,婴儿用上它整夜不必换尿片。这种用高吸水性高分子做成的纸尿片,即使吸入1000mL水,依然滴水不漏,干爽通气。有的高吸水性高分子可吸收超过自重几百倍甚至上千倍的水,体积虽然膨胀,但加压却挤不出水来。这类奇特的高分子材料可用淀粉、纤维素等天然高分子与丙烯酸、苯乙烯磺酸进行接枝共聚得到,或用聚乙烯醇与聚丙烯酸盐交联得到。高吸水性高分子的吸水机制尚不清楚,可能与高分子交联 ...
塑料是在一定的温度和压力下可塑制成型的合成高分子材料。合成高分子具有热塑性和热固性,因而塑料可分为热塑性塑料和热固性塑料。热塑性塑料大都是线型高分子,热固性塑料为体型高分子。若将塑料按性能和用途来分类,可分为通用塑料、工程塑料、特种塑料和增强塑料。通用塑料产量大、用途广、价格低,其中聚乙烯、聚氯乙烯、聚丙烯和聚苯乙烯约占全部塑料产量的80%,尤以聚乙烯的产量最大。 ...
乙烯单体在不同的反应条件下进行加成聚合反应可得到不同性能的聚乙烯。若选择0.2~1.5 MPa低压聚合,用Ziegler-Natta催化剂,得到的产品为低压聚乙烯。低压聚乙烯是线型高分子,排列比较规整、紧密,易于结晶,因此结晶度、强度、刚性、熔点都比较高,适合做强度、硬度较高的塑料制品,如桶、瓶、管、棒等。若在150MPa高压下用自由基引发加成聚合反应,得到的是高压聚乙烯,它是支链化程度较高的合成 ...
特种塑料是指在高温、高腐蚀或高辐射等特殊条件下使用的塑料,它们主要用在尖端技术设备上。例如聚四氟乙烯具有优异的绝缘性能,抗腐蚀性特别好,能耐高温和低温,可在-200~250℃范围内长期使用,在宇航、冷冻、化工、电器、医疗器械等工业部门都有广泛的应用。 ...
纤维分为天然纤维和化学纤维两大类。棉、麻、丝、毛属天然纤维。化学纤维又可分为人造纤维和合成纤维。人造纤维是以天然高分子纤维素或蛋白质为原料,经过化学改性而制成的,如粘胶纤维(人造棉)、醋酸纤维(人造丝)、再生蛋白质纤维等。合成纤维是由合成高分子为原料,通过拉丝工艺获得纤维。合成纤维的品种很多,最重要的品种是聚酯(涤纶)、聚酰胺(尼龙、锦纶)、聚丙烯腈(腈纶),它们占世界合成纤维总产量的90%以上。 ...
聚酯纤维商品名涤纶,又叫的确良。主要用于织衣料,也可做运输带、轮胎帘子线、过滤布、缆绳、渔网等。涤纶织物牢固、易洗、易干,做成的衣服外形挺括,抗皱性特别好。涤纶的分子链结构中含有酯基( ),这类刚性基团的存在,使分子排列规整、紧密,结晶度较高,不易变形,受力形变后也易恢复,这是涤纶抗皱性好的原因。 ...
聚酰胺纤维商品名尼龙,也叫锦纶;最常见的是尼龙-6和尼龙-66。尼龙主要用于制做渔网、降落伞、宇航飞行服、丝袜及针织内衣等。尼龙织物的特点是强度大,弹性好,耐磨性好。这些优越的性能是由结构决定的。聚酰胺分子链中存在酰胺基( ),分子链之间各酰胺基可以通过氢键的作用,使分子链之间的作用力大为加强,保证了织物的强度。 ...
橡胶分天然橡胶和合成橡胶。天然橡胶来自热带和亚热带的橡胶树。由于橡胶在工业、农业、国防领域中有重要作用,因此它是重要的战略物资,这促使缺乏橡胶资源的国家率先研究开发合成橡胶。通过对天然橡胶的化学成分进行剖析,发现它的基本组成是异戊二烯。于是启发人们用异戊二烯作为单体进行聚合反应,得到了合成橡胶,称为异戊橡胶。异戊橡胶的结构与性能基本上与天然橡胶相同。由于当时异戊二烯只能从松节油中获得,原料来源受到 ...
由几个或几十个原子通过化学键结合形成的分子,分子量在几十到几百,这种分子称为小分子。如醋酸分子(CH3COOH)、乙醇分子(CH3CH2OH)、甘氨酸分子(NH2CH2COOH)等都是小分子化合物。然而有的分子由一千个以上原子通过共价键结合形成,分子量可达几万至几百万,这类分子称为高分子,或称高分子化合物。存在于自然界中的高分子化合物称为天然高分子,如淀粉、纤维素、棉、麻、丝、毛都是天然高分子,人 ...