产品封面图
文献支持

CHO-K1细胞系、CHO-K1细胞株、CHO-K1细胞、C

HO-K1细胞、CHO-K1中国仓鼠卵巢上皮细胞
收藏
  • ¥1480
  • EK-Bioscience已认证
  • 国内
  • SY4391
  • 2025年08月13日
    avatar
    品牌商
    12钻石会员
  • 企业认证

    点击 QQ 联系

    • 详细信息
    • 文献和实验
    • 技术资料
    • 英文名

      CHO-K1

    • 库存

      1x10^6/瓶

    • 供应商

      上海酶研

    • 肿瘤类型

    • 细胞类型

      CHO-K1

    • 品系

      CHO-K1

    • 组织来源

      中国仓鼠卵巢上皮细胞

    • 相关疾病

      详询

    • 物种来源

      中国仓鼠

    • 免疫类型

      详询

    • 细胞形态

      贴壁/悬浮

    • 是否是肿瘤细胞

    • 器官来源

      中国仓鼠卵巢上皮细胞

    • 运输方式

      顺丰快递

    • 年限

      5年

    • 生长状态

      生长良好

    • 规格

    CHO-K1细胞系、CHO-K1细胞株、CHO-K1细胞、CHO-K1细胞、CHO-K1中国仓鼠卵巢上皮细胞

    Cell line name CHO-K1

    Synonyms CHO K1; CHOK1; CHO cell clone K1; GM15452

    Accession CVCL_0214

    Resource Identification Initiative To cite this cell line use: CHO-K1 (RRID:CVCL_0214)

    Comments Registration: International Depositary Authority, American Type Culture Collection (ATCC); CRL-9618.

    Doubling time: ~24 hours (DSMZ=ACC-110).

    Omics: Genome sequenced.

    Omics: Metabolome analysis.

    Omics: miRNA expression profiling.

    Omics: Deep proteome analysis.

    Omics: Glycoproteome analysis by proteomics.

    Omics: Transcriptome analysis by microarray.

    Omics: Transcriptome analysis by RNAseq.

    Derived from site: In situ; Ovary; UBERON=UBERON_0000992.

    Cell type: Epithelial cell of ovary; CL=CL_2000064.

    Species of origin Cricetulus griseus (Chinese hamster) (Cricetulus barabensis griseus) (NCBI Taxonomy: 10029)

    PubMed=10320750; DOI=10.1016/S0027-5107(99)00077-9

    Hu T., Miller C.M., Ridder G.M., Aardema M.J.

    Characterization of p53 in Chinese hamster cell lines CHO-K1, CHO-WBL, and CHL: implications for genotoxicity testing.

    Mutat. Res. 426:51-62(1999)

     

    PubMed=21804562; DOI=10.1038/nbt.1932; PMCID=PMC3164356

    Xu X., Nagarajan H., Lewis N.E., Pan S.-K., Cai Z.-M., Liu X., Chen W.-B., Xie M., Wang W.-L., Hammond S., Andersen M.R., Neff N., Passarelli B., Koh W., Fan H.C., Wang J.-B., Gui Y.-T., Lee K.H., Betenbaugh M.J., Quake S.R., Famili I., Palsson B.O., Wang J.

    The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line.

    Nat. Biotechnol. 29:735-741(2011)

     

    PubMed=21945585; DOI=10.1016/j.jbiotec.2011.09.014

    Becker J., Hackl M., Rupp O., Jakobi T., Schneider J., Szczepanowski R., Bekel T., Borth N., Goesmann A., Grillari J., Kaltschmidt C., Noll T., Puhler A., Tauch A., Brinkrolf K.

    Unraveling the Chinese hamster ovary cell line transcriptome by next-generation sequencing.

    J. Biotechnol. 156:227-235(2011)

     

    PubMed=22971049; DOI=10.1021/pr300476w; PMCID=PMC3772721

    Baycin-Hizal D., Tabb D.L., Chaerkady R., Chen L., Lewis N.E., Nagarajan H., Sarkaria V., Kumar A., Wolozny D., Colao J., Jacobson E., Tian Y., O'Meally R.N., Krag S.S., Cole R.N., Palsson B.O., Zhang H., Betenbaugh M.J.

    Proteomic analysis of Chinese hamster ovary cells.

    J. Proteome Res. 11:5265-5276(2012)

     

    DOI=10.3390/pr1030296

    Wurm F.M.

    CHO quasispecies -- implications for manufacturing processes.

    Processes 1:296-311(2013)

     

    PubMed=23873082; DOI=10.1038/nbt.2624

    Lewis N.E., Liu X., Li Y.-X., Nagarajan H., Yerganian G., O'Brien E., Bordbar A., Roth A.M., Rosenbloom J., Bian C., Xie M., Chen W.-B., Li N., Baycin-Hizal D., Latif H., Forster J., Betenbaugh M.J., Famili I., Xu X., Wang J., Palsson B.O.

    Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome.

    Nat. Biotechnol. 31:759-765(2013)

     

    PubMed=26993211; DOI=10.1016/j.jbiotec.2016.03.022

    Klanert G., Jadhav V., Shanmukam V., Diendorfer A.B., Karbiener M., Scheideler M., Hernandez-Bort J.A., Grillari J., Hackl M., Borth N.

    A signature of 12 microRNAs is robustly associated with growth rate in a variety of CHO cell lines.

    J. Biotechnol. 235:150-161(2016)

     

    DOI=10.3390/pr5020020

    Wurm F.M., Wurm M.J.

    Cloning of CHO cells, productivity and genetic stability -- a discussion.

    Processes 5:20.1-20.13(2017)

     

    PubMed=28544881; DOI=10.1016/j.cels.2017.04.009

    Yusufi F.N.K., Lakshmanan M., Ho Y.-S., Loo B.L.-W., Ariyaratne P., Yang Y.-S., Ng S.K., Tan T.R.-M., Yeo H.C., Lim H.L., Ng S.W., Hiu A.-P., Chow C.P., Wan C., Chen S.-W., Teo G., Song G., Chin J.-X., Ruan X.-A., Sung K.W.-K., Hu W.-S., Yap M.G.-S., Bardor M., Nagarajan N., Lee D.-Y.

    Mammalian systems biotechnology reveals global cellular adaptations in a recombinant CHO cell line.

    Cell Syst. 4:530-542.e6(2017)

     

    PubMed=32078082; DOI=10.1007/s10529-020-02841-0

    Capella Roca B., Doolan P., Barron N., O'Neill F., Clynes M.

    Altered gene expression in CHO cells following polyamine starvation.

    Biotechnol. Lett. 42:927-936(2020)

     

    PubMed=32619503; DOI=10.1016/j.ymben.2020.06.002

    Szeliova D., Ruckerbauer D.E., Galleguillos S.N., Petersen L.B., Natter K., Hanscho M., Troyer C., Causon T., Schoeny H., Christensen H.B., Lee D.-Y., Lewis N.E., Koellensperger G., Hann S., Nielsen L.K., Borth N., Zanghellini J.

    What CHO is made of: variations in the biomass composition of Chinese hamster ovary cell lines.

    Metab. Eng. 61:288-300(2020)

     

    PubMed=34050613; DOI=10.1002/biot.202100165

    Wurm M.J., Wurm F.M.

    Naming CHO cells for bio-manufacturing: genome plasticity and variant phenotypes of cell populations in bioreactors question the relevance of old names.

    Biotechnol. J. 16:e2100165.1-e2100165.13(2021)

     

    PubMed=34737324; DOI=10.1038/s41598-021-00779-5; PMCID=PMC8569163

    Lung O., Candlish R.C., Nebroski M., Kruckiewicz P., Buchanan C., Moniwa M.

    High-throughput sequencing for species authentication and contamination detection of 63 cell lines.

    Sci. Rep. 11:21657-21657(2021)

     

    PubMed=36610518; DOI=10.1016/j.ymben.2022.12.009; PMCID=PMC11132536

    Kotidis P., Donini R., Arnsdorf J., Hansen A.H., Voldborg B.G.R., Chiang A.W.-T., Haslam S.M., Betenbaugh M.J., Jimenez del Val I., Lewis N.E., Krambeck F.J., Kontoravdi C.

    CHOGlycoNET: comprehensive glycosylation reaction network for CHO cells.

    Metab. Eng. 76:87-96(2023)

    风险提示:丁香通仅作为第三方平台,为商家信息发布提供平台空间。用户咨询产品时请注意保护个人信息及财产安全,合理判断,谨慎选购商品,商家和用户对交易行为负责。对于医疗器械类产品,请先查证核实企业经营资质和医疗器械产品注册证情况。

    图标文献和实验
    该产品被引用文献

    *发表【中文论文】请标注:由上海酶研生物科技有限公司提供;

    *发表【英文论文】请标注:From Shanghai EK-Bioscience Biotechnology Co., Ltd.

    相关实验
    • 关于CHO-K1细胞稳定转染和瞬转COS的问题

      问:各位大虾小弟我最近一直在瞬转COS细胞分泌表达上清一直没有表达也浓缩过再做ELISA WB 都没有啊时间挺长了实在等不及了就想稳定转染cho-k1细胞系通过MSX来筛选加压25UM的MSX 结果还不到两个星期CHO全死了不知道怎么回事如果有表达的话应该是分泌表达的怎么我总是做不出来呢很是一个郁闷阿 质粒纯度和浓度都应该没问题希望做过这方面试验的高人指点一下到底哪里我还没有考虑到阿谢谢了答:提三点建议:1,用MSX筛选之前最好做预实验,摸出其最小有效浓度,然后用这个浓度去筛选阳性

    • 实验室常用的细胞有哪些?

      1. CHO-K1 细胞CHO-K1 细胞是实验中非常常用的一个细胞株,在生物制药中使用也非常广泛。该细胞株培养条件简单,贴壁强度适中,比较容易转染,很适合用它来研究一般哺乳动物基因的功能。来源:Cricetulus griseus (中国仓鼠) 卵巢形态:表皮细胞生长特性:贴壁注释:CHO-K1 由 CHO 衍生而来,CHO 是 T. T. Puck 在 1957 年从一只成年中国仓鼠卵巢获得的。培养液:Ham's F12K(含 2 mM L - 谷氨酰胺,1.5 g/L NaHCO

    • xCELLigence系统内源性GPCRs细胞功能研究

      xCELLigence 系统是一种灵敏的、可靠的检测系统,用于持续内源性 GPCR 功能测定。研究中我们对涉及 24 个治疗相关受体家族的一组 43 个配体(参见表 1)进行了测定,并生成了相关GPCR功能图谱。实验涉及通用的肿瘤细胞系、HeLa、U2OS、SH-SY5Y 与 CHO-K1,以及 疾病相关的原代细胞:人血管内皮细胞与混合肾上皮细胞。  = 最大细胞指数值超出缓冲液对照的3倍标准差 = 最小细胞指数值低于缓冲液对照的3倍标准差 表 1:GPCR 功能图概述    材料与方法  

    同类产品报价

    产品名称
    产品价格
    公司名称
    报价日期
    ¥1400
    上海盖宁生物科技有限公司
    2026年01月21日询价
    ¥1400
    上海酶研生物科技有限公司
    2025年12月30日询价
    ¥800
    蒂科(上海)生物科技有限公司
    2025年08月01日询价
    询价
    齐一生物科技(上海)有限公司
    2025年08月06日询价
    询价
    默瑞(上海)生物科技有限公司
    2025年10月25日询价
    文献支持
    CHO-K1细胞系、CHO-K1细胞株、CHO-K1细胞、CHO-K1细胞、CHO-K1中国仓鼠卵巢上皮细胞
    ¥1480